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Abstract

Graph mining is one of the well-established fields of data mining. Still, it remains
an active research area, considering that in many real-world scenarios (e.g., social media,
airline operations), a large amount of data comes in the form of graphs. Graphs are
helpful when the structure of data is equally important as the content, and necessarily,
graphs are used to model relationships between entities. Graph mining methods focus
on discovering subsets of vertices in a graph, as patterns representing useful structural
insights about the data.

The usefulness of a pattern for an analyst is mainly quantified using an interestingness
measure. In general, most of the interestingness measures are data-driven, i.e., the inter-
estingness is determined only based on the available data and the pre-specified patterns’
structures to be discovered, with minimal analyst’s interaction. However, in practice, the
concept of interestingness is mostly subjective, as the usefulness of a pattern is dependent
on the analyst and his/her prior knowledge. Here, a pattern is considered to be sub-
jectively interesting if it departs from the analyst’s expectations. Notably, the existing
notion of subjective interestingness is largely limited for simple graphs (graphs having a
single edge between a vertex-pair). This marks a major research gap, since, there do ex-
ist many real-world scenarios which could be realistically modelled through multigraphs,
characterized by multiple edges between a vertex-pair. For example, in the co-authorship
network, two authors may have multiple co-authored publications, a scenario that could
be modelled through multiple edges (each representing a unique co-authored publication)
between the two vertices (representing each author).

One of the fundamental contributions of this thesis relates to bridging the research
gap, through the proposition of a subjective interestingness measure for multigraph pat-
terns. Subsequently, an algorithm to iteratively discover subjectively interesting multi-
graph patterns is developed. The proposed algorithm’s advantages over existing methods
are demonstrated by extensive experiments on synthetic and real-world datasets, such as
co-actor and co-authorship networks.

Arguably, the relationships in the data also evolve with time. For instance, in a

collaboration network of actors, the collaboration between two actors may or may not



be observed each year. This fact makes the corresponding graph representation dynamic.
The problem of summarization, i.e., succinctly describing a dynamic graph, is widely
studied to enable a user to store and visualize large volumes of data efficiently. The
focus of existing methods has been on finding a minimal set of temporal graph patterns.
However, in many applications, the evolution of a graph structure is equally important
for an analyst as a graph pattern’s temporal presence. For example, an analyst may
be interested in learning informative changes, such as how the traffic load changes in
real-time between different airports.

Recognizing the above, this thesis also fundamentally contributes by way of laying out
and defining the fundamental concepts of subjective interestingness for dynamic graphs.
Here, a dynamic graph is treated as a sequence of static graph snapshots, and each snap-
shot could be treated both as a simple graph or a multigraph. Further, the problem
of online summarization of dynamic graphs is introduced, where the summary (of in-
formative changes) is incrementally conveyed to the analyst, as the graph evolves while
accounting for his/her knowledge at the specific time instances. Here, an algorithm for
online summarization of dynamic graphs has been proposed, enabling revelation of inter-
pretable changes to the connectivity structure of the graph with time. The efficacy of the
proposed approach and the algorithm is demonstrated by experimental evaluations over
a large variety of real-world datasets, such as dynamic interaction network, co-authorship
network, the network of links on the web, and a dedicated treatment of a real-world airline

case study.
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Chapter 1

Introduction

“Data is the new oil. It’s valuable, but if unrefined it cannot really be used. It has
to be changed into gas, plastic, chemicals, etc. to create a valuable entity that drives
profitable activity; so must data be broken down, analyzed for it to have value.” This
phrase dating back to 2006 is credited to the UK mathematician Clive Humby. Over
the last decade, this phrase has grown all the more significant, as nearly everything
impacting our day to day life is linked to a data source: internet, call data records,
healthcare records, customer transactions, stock market data, news, literature, scientific
publications, weather data, etc. Hence, the need to analyze data sets to generate value is
now being considered critically important. Notably, the early attempts to analyze data
sets and summarize their main characteristics link to Exploratory Data Analysis (EDA)
[Tukey, 1977]. Tt focuses on gaining insights into the systematic relations between variables
characterizing the data, often using visual and statistical methods. However, with an ever-
increasing volume, velocity and variety of data, the field of Knowledge Discovery from
Data (KDD) [Piatetsky-Shapiro, 1990] has gained prominence. KDD, commonly referred
to as data mining, is a means to discover interesting patterns and knowledge from data,
which otherwise may not be easily visualized. Although data mining methods may adopt

EDA techniques, their scope is not limited to them.

Subjective Interestingness Measures

In data mining, interestingness measures play an instrumental role in quantifying the po-
tential usefulness of patterns and even ranking them. Interestingness measures are used to
underline aspects such as conciseness, novelty, utility and actionability [Geng and Hamil-
ton, 2006]. Notably, a pattern that considerably improves an analyst’s understanding is
either novel or may contradict his/her expectations about the data. In the same spirit,
De Bie [2011a] suggested that a data mining process is driven by both an analyst and the

data itself. An analyst can intervene in the data-mining process at different levels, such as
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defining a method for pattern discovery, ranking or filtering. In that, an interestingness
measure is considered subjective if it incorporates an analyst’s knowledge either a prior:
or by intermittent interaction through the data-mining process. The property of an in-
terestingness measure to depart from or contradict an analyst’s knowledge is referred to
as surprisingness. The advantages of using subjective interestingness measures in a data

mining method relate to the following:

uncertainty and misconceptions of an analyst about the data can be reduced.

e unique patterns can be found which otherwise may be overlooked.

patterns discovered may pinpoint the shortcomings of any previous learning in the

data.

the patterns found may point to facets of the data that may need further study.

Although subjective interestingness measures have several advantages over any other
interestingness measure, it is challenging to quantify an analyst’s prior beliefs. Most of
the data mining methods use an approach where a measure is proposed to approximate
the actual interestingness of a pattern [van Leeuwen et al., 2016]. Another challenge
in data mining methods is that searching for a pattern in data is a computationally
expensive task. Hence, most data mining methods use an interestingness measure which:
1) approximate the actual interestingness, and 2) can be computed efficiently. The former
is mostly treated informally to develop a cost-effective method and may lack the element

of surprisingness.
Graph Mining

Many real-world scenarios where relationships between entities play a vital role are best
studied as graphs (or networks). Some examples include social networks, interaction
networks, transport networks, protein interaction networks and computer networks. The
fact that network analysis can be used to untangle many real-world problems is widely
accepted and explored. In network analysis, interesting patterns may render information
in the form of a subset of vertices acting as a coherent group that is intently connected and
may share common properties, interests, and theme compared to any randomly selected

subset.



In order to find interesting patterns which are closely related or densely connected,
a graph mining method often uses a form of density measures, such as average de-
gree [Charikar, 2000; Khuller and Saha, 2009], k-cores [Batagelj and Zaversnik, 2003],
cliques [Palla et al., 2005], quasi-cliques [Tsourakakis et al., 2013; Uno, 2010], or k-
plex [McClosky and Hicks, 2012]. These measures have fixed beliefs on the appearance
of a closely connected subset of vertices or subgraphs, and are designed to optimize the
computational cost of finding such subgraphs. As discussed earlier, these measures also
neglect a critical aspect of interestingness: usefulness to an analyst. For example, it is
more surprising and useful to know in a network that vertices with low vertex degree
forms a dense subgraph pattern than vertices with high vertex degree. Thus, interest-
ingness is subjective and quantified by considering an analyst’s prior belief about the
network. Informally, subjectively interesting subgraph patterns are defined as patterns

that are surprisingly dense relative to an analyst’s expectations.

One of the major contributions towards formalizing subjective interestingness, is a gen-
eral framework introduced by De Bie [2011b]. The author suggests that the formulation
of subjective interestingness is guided by the information contained in a pattern and the
complexity required to encode this information. Based on this, van Leeuwen et al. [2016]
proposed a method to discover subjective subgraph patterns, while Bendimerad et al.

[2020] addressed the problem of finding subjectively interesting attributed subgraphs.

Arguably, the relationships in the graph may also evolve with time. For instance, in
a collaboration network of actors, the collaboration between two actors may or may not
be observed each year. This fact makes the corresponding graph representation dynamic.
In dynamic graph mining, the problem of summarization, i.e., succinctly describing a
dynamic graph, is widely studied to enable a user to store and visualize large volumes
of data efficiently. The focus of existing methods has been on finding a minimal set of
temporal graph patterns [Shah et al., 2015; Sun et al., 2007; Tsalouchidou et al., 2020].
In that, a common practice is to treat a dynamic graph as a sequence of static graph
snapshots, upon fragmentation of time into consecutive internals of particular duration.
The summary is created by stitching together structures found in different snapshots.

The structures discovered by TimeCrunch [Shah et al., 2015] include cliques, stars, cores,

3
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bipartite cores, and their near representatives. These structures are presumed to exist in

a graph snapshot which may or may not be informative for an analyst.
Aim and Objectives

The brief introduction above has pointed to the practical utility of the notion of subjective
interestingness. It has also established with reference to the state of the art that this
concept has only been realized in the context of static simple graphs and attributed

graphs. This, in turn, points to the following research gap:

e the concept of subjective interestingness has not been developed for multigraphs,
implying graphs where multiple edges may characterize any vertex pair. This is
alarming, given that many real-world scenarios could be realistically modelled only
through multigraphs. For instance, an airline network (where multiple flights/edges
are natural between a pair of airports/vertices) or co-authorship network (where
two authors/vertices may co-author multiple publications/edges).

e the concept of subjective interestingness has not been developed for dynamic graphs.
In such a scenario, the incremental evolution of subjectively interesting graph struc-
tures with time (online summarization), which could be of great interest for analysts,
can not be studied. For instance, an interested analyst may be deprived of learning
as to how the air-traffic between different airports changes incrementally in real-
time, in a manner that departs from his/her prior knowledge. This points to the
need to develop the concept of subjective interestingness for evolving simple graphs
and multigraphs (dynamic graphs treated as a sequence of static—simple graphs and

multigraphs, respectively).

In pursuit of bridging the above research gap, this thesis aims to develop the concept of
subjective interestingness for different graph types, including, static multigraphs, evolving
simple graphs, and evolving multigraphs. This aim has been realized through the following

objectives:

e subjective interestingness has been defined for static multigraphs.
e an algorithm to iteratively discover subjectively interesting (static) multigraph pat-

terns has been proposed.



e the definitions of subjective interestingness for static simple graphs and multigraphs
have been adapted to cater to their dynamic counterparts.

e a novel algorithm for online summarization offering subjectively interesting incre-
mental changes has been proposed, for both evolving simple graphs and multigraphs.

e the efficacy of the proposed definitions and algorithms has been demonstrated
through experimental evaluations on several synthetic and real-world datasets, in-

cluding a dedicated treatment of a real-world airline case study.

Key Challenges

Some of the key challenges faced in this thesis, and the remedies adopted are highlighted

below.

e A subjective interestingness measure should be computationally cost-effective. The
formulation of subjective interestingness measure in [De Bie, 2011b] computes self-
information of a pattern as the negative logarithm of the probability of a pattern.
This factor can be computed in a (somewhat) cost-effective manner if a pattern is
known, but this factor turns out to be cost-ineffective when used in a search process
to discover a pattern. In case of static simple graphs, van Leeuwen et al. [2016]
approximated the self-information of a pattern using the upper bounds of the upper
tail probability distributions which can be computed in much less cost. However,
for addressing static multigraphs, heuristic based novel and computationally cost-
effective subjective interestingness measures have been proposed in this thesis.

e In the process of discovering subjectively interesting graph patterns, a crucial factor
is the number of patterns that are sufficient for an analyst to learn. A large set of
patterns may overwhelm an analyst. This issue is not of major concern in static
graphs and can be considered as a user-defined parameter. However, in the case
of evolving graphs, as the number of subjectively interesting patterns may vary
across different time snapshots, fixing a user-defined parameter a priori may not
be effective, as it may lead to under-fitting or over-fitting of the model or the
knowledge discovered. To overcome this challenge, this thesis draws inspiration from

the Minimum Description Length (MDL) principle [Griinwald, 2007] and proposes
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a novel subjective interestingness measure that implicitly helps avoid either under-
fitting or over-fitting.

e Further, in the case of evolving graphs, another challenge relates to how the changes
in the graph patterns should be discovered, evaluated and communicated to an an-
alyst? To address the discovery challenge, six different types of atomic changes
or actions have been defined. These atomic changes are evaluated using the pro-
posed MDL inspired subjective interestingness measure. In each iteration, the most

promising atomic change is communicated to the analyst.

Contributions and Organization of the Thesis

In this thesis, we develop graph mining methods to discover subgraph patterns in sev-
eral types of graphs, including static multigraphs, evolving simple graphs and evolving
multigraphs. The main contributions of this thesis are summarized below vis-a-vis the

organization of this thesis.

Chapter 2 provides the literature survey of the related work. In this, we highlight the re-
search gap in the literature and show how this thesis’s contributions are distinguished

from previous (related) work.

Chapter 3 presents the first contribution of the thesis. This chapter discusses the con-
ceptual framework proposed for subjective interestingness measures for multigraph
patterns. We lay the foundations by modeling the different type of prior beliefs. We
also propose a greedy algorithm, termed SIMP, for iteratively discovering subjectively
interesting multigraph patterns. Finally, we demonstrate the proposed algorithm’s
efficacy through extensive experiments on synthetic and real-world examples, such as

co-authorship and co-actor networks.

Chapter 4 presents the second contribution of the thesis. In this chapter, we intro-
duce a problem of subjective online summarization of evolving simple graphs. We
approached this problem through a proposed novel generic framework for subjective
interestingness for sequential data, considering that an evolving graph is treated as a
sequence of static graph snapshots. This framework is then instantiated for evolving

simple graphs. Finally, we present DSSG, a heuristic algorithm to practically ap-



proach the proposed problem. We demonstrate the efficacy of our approach through

experimental evaluations on real-world data.

Chapter 5 presents the third contribution of the thesis. This chapter discusses a dif-
ferent form of graph called evolving multigraphs, where a dynamic graph is treated
as a sequence of static multigraph snapshots. Subsequently, we instantiate the novel
framework proposed in Chapter 4, for evolving multigraphs by laying out the defini-
tions of necessary concepts. We demonstrate the efficacy of the proposed approach
through experiments on real-world examples which can be realistically modeled as

evolving multigraphs.

Chapter 6 presents the fourth contribution of the thesis. In this chapter, the proposed
methods and algorithms have been applied to real-world airline case studies to es-
tablish practical applicability. First, we present a case study where we showcase
a practical application of subjectively interesting multigraph patterns in studying
airline networks to learn the set of connected airports with surprisingly high traffic
volumes. Next, we propose the means to translate the discovered multigraph pat-
terns into machine-interpretable features. Later, we endeavor to address two major
problems of airliners, i.e., SBT selection and delay prediction. We highlight the ben-
efits that may be associated with a subjectively interesting pattern in these domains.
Finally, using DSSG, we present a dedicated treatment of a real-world airline case
study. In this case study, we exhibit a scenario where an online and incremental

analysis of structural changes in dynamic graphs can render valuable insights.

Chapter 7 concludes the thesis and discusses the potential directions of future work.
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Chapter 2

Literature Review

This chapter presents a literature survey of the two domains most closely related to
this thesis research problem. These domains are subjective interestingness measures and
graph mining methods. In Section 2.1, we discuss the studies in the literature focused
on the definition and formulation of subjective interestingness measures. In Section 2.2,
we discuss the methods of graph mining present in the literature. We highlight the two
research gaps identified in the literature, i.e., the concept of subjective interestingness
for multigraphs (in Section 2.2.1) and for dynamic graphs (in Section 2.2.2). Finally, we

conclude in Section 2.3.

2.1 Subjective Interestingness

Knowledge discovery from data (KDD), commonly known as data mining, is the process
of extracting insights from the data in the form of patterns. These extracted patterns are
evaluated for the information contained based on interestingness measures [Han et al.,
2011]. Data mining aims to find patterns that can be added to the analyst’s knowledge
(or belief) about the data. Thus, interestingness measures are instrumental for ranking
patterns based on their inherent knowledge or potential significance to the analyst. These
measures also help the analyst balance the time-space trade-off in costs associated with a
data mining method. Geng and Hamilton [2006] proposed that an interestingness measure
may have the following properties, including conciseness, coverage, reliability, peculiarity,
diversity, novelty, surprisingness, utility, and actionability.

A pattern is concise if an analyst can easily understand it; while coverage describes
the comprehensiveness of a pattern or a set of patterns, i.e., it shall cover a large part of
the data [Padmanabhan and Tuzhilin, 2000]. If a pattern has high conviction about the
data, it is reliable to an analyst. Reliability is commonly evaluated in association rule
mining methods in the form of measures such as support and confidence [Tan et al., 2002].

Peculiarity and diversity implies that a pattern shall be considerably disparate from the
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other found patterns [Hilderman and Hamilton, 2013; Zhong et al., 2003]. Nowelty and
surprisingness propound the characteristic feature of a pattern, if an analyst does not
know it earlier [Sahar, 1999] and it controverts an analyst’s prior beliefs [Liu et al., 1999;
Silberschatz and Tuzhilin, 1996], respectively. Finally, with wutility and actionability, a
pattern can be categorized if it is usable and can offer decision making support to an
analyst for a required problem [Chan et al., 2003; Ling et al., 2002; Wang et al., 2002;
Yao and Hamilton, 2006].

Among the above discussed nine properties, novelty and surprisingness are based
on an analyst’s current expectations and are thus not limited to the raw data itself.
Hence, a measure is considered to be subjective if it incorporates the analyst’s knowledge
either explicitly or by interaction with the analyst through the mining process [Geng
and Hamilton, 2006]. The critical differences between the objective measures and the

subjective measures can be understood from Table 2.1.

Table 2.1. Comparison of objective measures versus subjective measures.

Objective Measures Subjective Measures

e Domain independent with minimal interac- e Domain dependent with the analyst’s prior

tion with the analyst. knowledge built in.
e Only data driven and do not access the prior e Access the analyst’s prior knowledge along
knowledge of the analyst. with the raw data.
e Criteria on which these measures are based: e Main criteria on which these measures are
* conciseness, based:
* coverage, * mnovelty & surprisingness, and
* reliability, * usefulness & actionability.
* peculiarity, and These measures may also address the criteria
* diversity. for objective measures.

The central idea of subjective interestingness was first proposed by Silberschatz and
Tuzhilin [1996], who argued that a useful pattern for one analyst might not be useful for
another. In other words, a pattern’s interestingness is not only limited to the data and the

structure of a pattern, but also on the analyst who investigates it. The authors classified
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an interestingness measure based on two criteria: surprisingness and actionability. Since
actionability is challenging to capture, the authors believed that “most surprising patterns
are actionable and most actionable patterns are surprising”. Also, a pattern is considered
surprising if it contradicts an analyst’s expectations, modelled as a belief system, where

beliefs are defined as logical statements.

Although the notion of subjective interestingness was proposed a few decades ago,
the challenge of modelling prior beliefs has been persistent. This challenge has been
attempted to overcome by defining prior beliefs: in the form of rules X — Y (X and
Y being conjunctions of literals) [Padmanabhan and Tuzhilin, 2000; Silberschatz and
Tuzhilin, 1996], or using a Bayesian network model [Jaroszewicz and Simovici, 2004].
These methods have their limitations; they are either specific for patterns in the form
of rules or dependent on the type of data. Also, using a Bayesian network, it is not

straightforward to implement broad classes of prior beliefs.

It is only a decade ago when, to overcome the above limitations, De Bie [2011Db]
proposed a framework for FORmalizing Subjective Interestingness in Exploratory Data
mining (FORSIED)—based on the Maximum Entropy (MaxEnt) principle [Jaynes, 1982].
The FORSIED framework can be used to model the broad classes of prior belief as proba-
bility distributions, referred to as background distribution, for general types of data. The
author also proposed that given a background distribution, the subjective interestingness
measure can be defined using information-theoretic principles. The defined measure of
subjective interestingness comprises the following quantities: self-information of a pat-
tern, and the complexity required to encode a pattern. Self-information is the negative
log-probability of a pattern [Cover and Thomas, 1991] which quantifies the aspects of
novelty and surprisingness of a pattern. While the complexity of a pattern is described in
terms of description length—i.e., the bits required to encode a pattern and addresses the
aspect of conciseness. To cater to the criteria of coverage, peculiarity, and diversity, the
patterns can be iteratively discovered by updating background distribution at each step
[De Bie, 2011a]. The idea behind updating the background distribution is to align with
the analyst’s current knowledge (prior knowledge and the knowledge discovered). Thus, if

a pattern is already learned then the probability will be substantially reduced, and hence,
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a diverse set of patterns with high coverage can be discovered.

Based on the FORSIED framework, the method for subjective interestingness for sub-
graph patterns was proposed by van Leeuwen et al. [2016]. Lijffijt et al. [2016] presented a
generic framework for interesting structured relational patterns. Some of the other meth-
ods proposed in the literature based on the FORSIED framework include subjectively
interesting alternative clustering [Kontonasios and De Bie, 2015]; subjectively interesting
connecting trees [Adriaens et al., 2017]; subjectively interesting motifs in time series [Deng
et al., 2019]; and mining subjectively interesting attributed subgraphs [Bendimerad et al.,
2020]. Our main contributions based on the FORSIED framework include subjectively
interesting multigraph patterns [Kapoor et al., 2020] and online subjective summarization
of dynamic graphs [Kapoor et al., 2021]. In this thesis, we will discuss these contributions

in detail.

2.2 Graph Mining Methods

Graph mining is a prominent field of research in data mining. In many key domains, where
relationships between entities are important, graph data is found—to name a few: bioin-
formatics [Bouvel et al., 2005; Paul and Anand, 2018|, chemistry [Estrada et al., 2003],
social networks [Dakiche et al., 2019], transportation & traffic movement [Marshall et al.,
2018], computer network [Jain et al., 2011], text summarization [Chatterjee et al., 2018],
and geographical data [Duflot et al., 2018]. The graphs are also studied in different forms,
such as, simple graphs [van Leeuwen et al., 2016], weighted graphs [Andersen and Chel-
lapilla, 2009], multigraphs graphs [Ingalalli et al., 2018], multilayer graphs [Papalexakis
et al., 2013], attributed graphs [Bendimerad et al., 2020], directed graphs [Fang et al.,
2018], graph database [Angles and Gutierrez, 2008|, and dynamic graphs [Shah et al.,
2015]. Example applications that can be solved using graph mining methods include
gene selection using protein interaction graph [Dutta et al., 2019, identifying distinctive
patterns in Drug-drug interaction network [Sahu and Anand, 2018], routing in a wireless
sensor network [Gupta and Jana, 2015|, finding relevant communities in a social network

[Sharma et al., 2009], and so on.

This section discusses the widely known graph mining methods in the literature, di-
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vided into static and dynamic graph mining methods.
2.2.1 Static Graph Methods

A graph is considered to be static if it is fixed and does not observe any changes with
time. Although this thesis’s contribution is most closely related to dense subgraph mining

methods, we discuss other static graph mining methods in the literature for completeness.
Dense Subgraph Mining in Static Graphs

Dense subgraph mining is a well-researched problem, where density is generally considered
as a measure of importance. A dense subgraph may indicate a group or set of vertices
having common themes, common interests or high degree of interactions. The terms
cliques, quasi-cliques [Abello et al., 2002; Matsuda et al., 1999], k-cores [Seidman, 1983],
k-plex [Seidman and Foster, 1978], kD-cliques [Luce, 1950] and k-club [Mokken, 1979]
in static graphs have been systematically defined as interestingness measures and are
explored to represent dense subgraphs. In the past, significant effort has been on finding
dense patterns based on average degree [Charikar, 2000; Khuller and Saha, 2009], k-
cores [Batagelj and Zaversnik, 2003], cliques [Palla et al., 2005], quasi-cliques [T'sourakakis
et al., 2013; Uno, 2010], or k-plex [McClosky and Hicks, 2012]. Recent work on identifying
quasi-cliques includes Tsourakakis et al. [2013]; Veremyev et al. [2016], while Wu and Hao
[2015] summarize all methods for solving the maximum clique problem. For weighted
graphs, the notion of average degree has been extended in [Andersen and Chellapilla,
2009]. It has been noted that the modularity measure [Clauset et al., 2004; Newman,
2006], originally proposed for unweighted simple graphs, can be trivially extended to
weighted simple graphs. Gibson et al. [2005] studied the graphs which are massive to
identify large dense bipartite subgraphs.

Multilayer graphs are also widely studied for finding subgraph patterns or clusters
in the data; dense pattern discovery [Dong et al., 2012; Papalexakis et al., 2013]; and
community detection [Qi et al., 2012; Ruan et al., 2013; Silva et al., 2012; Xu et al., 2012;
Zhou et al., 2009], by use of matrix factorization, cluster expansion, pattern mining,
etc. For the discovery of dense subgraphs in multilayer graphs, Galimberti et al. [2017]

proposed a multilayer core decomposition method. A multilayer can be treated as multiple
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graphs necessarily having the same set of vertices. Thus, the problem of finding densest
common subgraph has been studied in [Charikar et al., 2018; Jethava and Beerenwinkel,
2015]. Multigraphs, on the other hand, are limitedly studied in the literature for finding
frequent patterns [Ingalalli et al., 2018], vertex colouring [Gyéri and Palmer, 2009] and
edge-colouring [Goldberg, 1984]; with little or no emphasis on dense subgraph mining from
a multigraph data. In the literature, the two terms, multigraph and multilayer graphs are
often used in place of each other. However, it can be argued that a multilayer graph has
several layers, each acting as an independent simple, weighted or attributed graph. In
contrast, a multigraph does not necessarily contain independent layers. However, in some
case, a multigraph can be informally represented as a weighted graph, such that weights

are non-negative integers.

Notably, the interestingness of a pattern is often defined as the departure from the
expectations. In the case when expectations are objectively defined (say, through modu-
larity [Clauset et al., 2004; Newman, 2006] or edge surplus [Tsourakakis et al., 2013]), it
is termed objectively interesting; and if expectations are derived subjectively (say, from
the prior beliefs of an analyst), it is termed subjectively interesting. van Leeuwen et al.
[2016] defined subjectively interesting patterns for simple graphs and introduced a heuris-
tic algorithm for mining those. Here, though the expectations were computed using the
prior beliefs, the background distribution was assumed to be the product of independent
Bernoulli distributions, given which the generalization of this work to the other type of

graph settings is a non-trivial and challenging task.

Thus, identifying the first research gap, one of the thesis’s contributions is to propose

a subjective interestingness based method to discover static multigraph patterns.

Clustering/Partitioning in Static Graphs

Another popular sub-category of static graph mining is clustering or partitioning of the
graph. Most of the methods focus on discovering splits, cuts, or partitions in a graph
to identify different regions or communities of interest using spectral partitioning [Alpert
et al., 1999], min-max cut [Ding et al., 2001], minimum cut trees [Flake et al., 2004,

betweenness measures [Newman and Girvan, 2004], quasi-cliques [Abello et al., 2002]
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or modularity maximization [Newman, 2006]. Alternatively, for clustering, more than
one conflicting measures can also be used to identify more generalized partitions in the
data [Saha and Bandyopadhyay, 2013]. In clustering methods, often nodes are clustered
to identify dense regions based on edge behavior. The edges in these methods may have
weights or numerical labels associated. Thus, these methods can also be used for weighted
and multilayer graphs, apart from simple graphs. In multilayer graphs, several methods
are proposed in the literature for community detection using node clustering approach

[Qi et al., 2012; Ruan et al., 2013; Silva et al., 2012; Xu et al., 2012; Zhou et al., 2009].

Clustering methods cover the graph as a whole, while pattern (subgraph) mining
in graph data restricts the knowledge discovery to some areas of interest, giving more
flexibility. Omne of the other limitations of clustering methods is that the number of
partitions needs to be defined by the user a priori. Also, in many real-world scenarios,
it is imperative to find overlapping communities. This highlights another shortcoming of
these methods; to overcome a greedy clique expansion method is proposed in [Paul and

Anand, 2018].

Static Graph Summarization

The idea of static graph summarization is to compress a graph [Koutra et al., 2014;
Navlakha et al., 2008] or aggregate nodes/edges in a graph [Goebl et al., 2016; LeFevre
and Terzi, 2010; Toivonen et al., 2011]. It is found to improve query efficiency [LeFevre
and Terzi, 2010], speed up clustering algorithms [Toivonen et al., 2011], effectively com-
press a graph dataset [Navlakha et al., 2008], and provide better visualization [Koutra
et al., 2014] of a graph dataset. Koutra et al. [2014] describe a graph by identifying
structures using a predefined vocabulary of graph structures such as stars, full & near
cliques, full & near bipartite cores, and chains, which minimizes the total encoded length
of the graph along with the model (based on the minimum description length principle).
Another popular objective of static graph summarization is to find influential dynamics
in a network through patterns [Goebl et al., 2016]. These patterns provide a high-level
description of a graph and are considered relevant and informative in real datasets such as

social networks, where information propagation is an essential characteristic of the data.

15



2. Literature Review

Cook and Holder [1994] subjectively summarize a graph by providing a hierarchical de-
scription of structural regularities guided by the background knowledge in terms of rules,
including compactness, connectivity, coverage and other types of domain-dependent rules.
Similar to our proposed approach, the authors combine the concept of minimum descrip-
tion length with background knowledge. However, we model background knowledge using

constraints and the maximum entropy principle.

Other Static Graph Mining Methods

The other categories of static graph mining methods apart from the above includes fre-
quent subgraph mining methods [Bringmann and Nijssen, 2008; Elseidy et al., 2014; Meng
and Tu, 2017] and network motifs discovery methods [Grochow and Kellis, 2007; Wernicke,
2006; Xia et al., 2019]. Frequent patterns are defined as structures in a graph, which are
frequent with respect to a support measure. In comparison, network motifs are defined as
small substructures in a graph significantly present in the input graph compared to their

presence in any random graph.

2.2.2 Dynamic Graph Methods

Dynamic graphs are informally defined as graphs that evolve with time. In a dynamic
graph, different settings can be assumed, where edges or vertices or both appear/disappear
with time (topological changes), attributes of edges or vertices or both changes with time
(label changes), and both attributes and labels can be observed to change together with
time. This thesis considers a setting where only edges appear or disappear with time, and

vertices remain fixed. Also, the edges and vertices are considered to be unlabelled.
Dynamic Subgraph Mining

This category covers methods that identify temporal graph patterns in a dynamic network.
Due to the time factor in dynamic graphs, static graph methods cannot be used, unless
redefined [Fournier-Viger et al., 2020]. In dynamic graph mining literature, one of the well-
renowned problems is frequent subgraph mining [Borgwardt et al., 2006; Wackersreuther
et al., 2010] similar to static graphs. Apart from frequent patterns, periodic patterns are

also of interest in dynamic graphs Apostolico et al. [2011]; Halder et al. [2017].
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Rozenshtein et al. [2017] studied interaction networks to find dense and temporally
compact patterns. The authors introduced the k-Densest episode identification problem
on temporal graphs [Rozenshtein et al., 2018], where an episode is defined as a pair of
a time interval and a subgraph. Galimberti et al. [2018] proposed the idea of maximal

span-cores and span-cores decomposition of temporal networks.

There are other dynamic graph mining methods present in the literature which can
be considered in this section; for simplicity, these methods are discussed in the following

section.

Dynamic Graph Summarization

This category is different from dynamic graph mining: graph summarization methods
identify structures and evolution that provide a succinct description of a network, while
graph mining methods identify all possible patterns in the network. As one of the con-
tributions of this thesis fits this category, Table 2.2 shows an overview of both existing
methods and ours; we will elaborate on this comparison in the last paragraph of this

section.

GraphScope [Sun et al., 2007] was one of the first methods that focused on summarizing
temporal graphs. It partitions the graph into bipartite cores and cliques. Simultaneously,
by detecting the change in the graph segment’s encoding cost upon presentation of a new

graph with the state’s evolution, segments are identified.

Com? [Araujo et al., 2014] identifies temporal edge-labelled communities in a graph
and uses the minimum description length (MDL) principle with Canonical Polyadic (CP)
or PARAFAC decomposition. TimeCrunch [Shah et al., 2015] also uses the MDL principle
to summarize a temporal graph. The authors identify graph structures, using the vocab-
ulary of graph structures given by Koutra et al. [2014], along with their corresponding
temporal presence in terms of one-shot, periodic, flickering ranged. Adhikari et al. [2017]
summarize a dynamic network by aggregating nodes into supernodes and time pairs into
‘super time’. This method creates a flattened graph (static) after aggregation. Each of
these methods concerns an instance of MDL-based dynamic graph compression (either

lossy or lossless), but none of them directly summarize how a dynamic graph change and
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evolves.

Various methods in the literature have directly or indirectly addressed the problem
of summarizing the evolution of a dynamic graph. You et al. [2009] captures repeated
addition and removal of subgraphs between two consecutive graph snapshots in a dy-
namic graph. Scharwéchter et al. [2016] proposed to find frequent structural changes,
such as triadic closure and homophilic rewiring, in the form of evolution rules. Ahmed
and Karypis [2015] summarize graph evolution by capturing co-evolving relational mo-
tifs, which occur when all or a majority of the occurrences of a relational pattern—or
motif—evolve similarly over time. Robardet [2009] proposed to capture the evolution of
isolated pseudo-cliques over time employing a sequence of five temporal events, including

formation, dissolution, growth, diminution and stability.

Similarly, Ahmed and Karypis [2012] proposed to epitomize an evolving graph by
identifying Evolving Induced Relational States (EIRS). The authors defined EIRS as a
sequence of Induced Relational States (IRS), which are a set of vertices that remain
connected by similar edges having the same direction and label for several consecutive
snapshots (based on a threshold). In EIRS, each TRS’s time interval cannot overlap with
other IRS and has several or at least a certain number of common vertices. Lin et al.
[2011] focus on discovering evolving communities by analyzing the dynamic interactions
between vertices by representing the multi-dimensional and multi-relational characteris-
tics as a relational hypergraph called a ‘metagraph’. Another recent method based on
TimeCrunch [Shah et al., 2015] that aims to capture graph structures’ evolution is given
in the preliminary work by Saran and Vreeken [2019]. They capture evolving graph pat-
terns by capturing dynamic events such as growth, split, merge, and change in structure
type (e.g., from clique to star) of a pattern. Based on their characteristics, these methods

can be referred to as methods for discovering evolving graph patterns.

All methods mentioned in this category thus far are defined for a ‘fixed” dynamic graph,
i.e., over a fixed time interval, and not for a ‘streaming’ dynamic graph that is generated
on-the-fly and should also be analyzed on-the-fly, where the summary should change
upon the presentation of a new snapshot of a graph. In other words, these methods do not

support online summarization. Recent methods for online dynamic graph summarization,
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Table 2.2. Comparison of dynamic graph summarization methods. The four rightmost columns show whether a method supports:

OS-Online Summarization; IS-Incremental Summarization; EP-Evolving Patterns; AS—Automatic selection of summary size.

Paper Algorithm Summary type Selection criterion Pattern type/structure OS IS EP AS
Sun et al. [2007] GraphScope Tempora] graph segments MDL Bipartites, cliques v X X v
. 2 (Lossy) MDL with tensor Stars, bipartites, tiny
Araujo et al. [2014] Com Edge labelled communities X X X v
decomposition groups
. Patterns with temporal Stars, bipartites, cliques,
Shah et al. [2015] TimeCrunch MDL X X X X*
presence chains
o Node and time pair based Aggregated node and
Adhikari et al. [2017] NetCondense  Condensed flattened network X X X X
aggregation measure time pairs
You et al. [2009] — Graph rewriting rules Structural changes Compressed subgraphs X X X X
B . Embedding based and event Triadic closure,
Scharwéchter et al. [2016] EVOMINE Evolution rules X X v X
base support homophilic rewiring
. Evolution paths of Maximal evolving induced
Ahmed and Karypis [2012] EIRS Induced relational states X X v/ X
stable relational states relational state
. . User defined minimum Co-evolving relational
Ahmed and Karypis [2015] CRMminer Frequent co-evolutions X X v X
support motifs
Lin et al. [2011] MetaFac Emergent communities Metagraph factorization Communities v X v X
Evolving patterns with Stars, bipartites, cliques,
Saran and Vreeken [2019] Mango MDL X X v X*
temporal presence chains
Tang et al. [2016] TCM Condensed graph stream Aggregation of nodes/edges Graph sketch v —
Khan and Aggarwal [2016] gMatrix Condensed graph stream Hash-mapping of nodes 3D sketch v —
Set of interesting subgraphs proScope & proRadius based .
Qu et al. [2016] OSNet Spreading tree v X v X
of cascades interestingness
Tsalouchidou et al. [2020] SDGM Condensed network k-partitions of nodes Dense micro-clusters v X X X
. . Informative evolving Maximum entropy and MDL  Changes in dense subgraphs of
This Thesis DSSG v v v

patterns

based

any shape

* The size of the summary is dependent on the size of candidate structures generated in each static snapshot of a dynamic graph, which is not necessarily automatic.
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discussed next, include Khan and Aggarwal [2016]; Qu et al. [2016]; Tang et al. [2016];
Tsalouchidou et al. [2020].

Tang et al. [2016] and Khan and Aggarwal [2016] generate a graphical sketch of a
dynamic graph, aggregating vertices and edge weights, which is updated after each snap-
shot of a graph sequence. These graphical sketches are useful to improve the efficiency of
graph-based queries. Qu et al. [2016] summarize a diffusion network, i.e., a dynamic graph
where information propagates with time, by discovering spreading trees (n-ary) as cas-
cades, which grows with a state change. Recently, Tsalouchidou et al. [2020] proposed the
Scalable Dynamic Graph summarization Method (SDGM) to generate an online summary
by extending the static graph summarization approach of LeFevre and Terzi [2010]. Al-
though these methods provide online summarization, they do not summarize informative
state-to-state relative changes in a dynamic graph. That is, they do not provide incre-
mental summaries, where each relative change in the structure of the graph is summarized

and communicated to the analyst step by step.

To bridge this gap in the literature, we consider the problem of discovering informative
changes in a streaming dynamic graph in an incremental manner. As we are interested
in finding all informative changes, we require our method to determine the number of
returned patterns automatically. To this end, we propose to identify subgraphs that max-
imally deviate from the analyst’s current knowledge. For this, we build on the notion of
subjective interestingness proposed by De Bie [2011b]. To the best of our knowledge, we
are the first to consider the problem of subjective, incremental, online graph summariza-
tion. This is corroborated by the qualitative comparison in Table 2.2, which shows the
relevant characteristics for all dynamic graph summarization methods discussed in this

section.

Since we propose to summarize a dynamic graph by means of dense patterns, we will
adapt TimeCrunch [Shah et al., 2015] and SDGM [Tsalouchidou et al., 2020] to establish

two baseline methods for empirical comparison in Chapter 4 (Section 4.5).
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2.3 Summary

In this chapter, we discussed the relevant literature and described the research gaps that
we address in this thesis. We highlighted the differences and advantages of subjective
interestingness measures over objective interestingness measures in data mining. In the
graph mining literature, it is observed that the use of subjective interestingness mea-
sures is limited and sporadic. Although the problem of dense subgraph mining is widely
studied, no robust definition has been given in the past for dense multigraph patterns.
We also observed that for summarizing a dynamic graph taking into account an ana-
lyst’s prior knowledge, informative changes in an evolving graph could be incrementally
communicated through evolving subjectively dense subgraphs of any shape. Until now,
this problem has not been investigated in the literature. It is of note that a common
practice for studying dynamic graphs is to segment the graph into a sequence of static
graph snapshots. These snapshots can be realistically represented as both simple and
multigraphs. Hence, we observed that another research gap is the absence of subjective
interestingness measures and methods to subjectively summarize a dynamic graph. This
thesis bridges these two research gaps by defining the subjective interestingness measures
for static multigraphs and dynamic graphs, and hence, proposing the corresponding graph

mining methods.
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Chapter 3

Subjective Interestingness of Multigraph

Patterns

Over the past decade, network analysis has attracted substantial interest because of its
potential to solve many real-world problems. This chapter®! lays the conceptual foun-
dation for an application in aviation, through focusing on the discovery of patterns in
multigraphs (graphs in which multiple edges can be present between vertices). Our main
contributions are two-fold. Firstly, we propose a novel subjective interestingness mea-
sure for patterns in both undirected and directed multigraphs. Though this proposition
is inspired by a previous related research for simple graphs (having only single edges),
the properties of multigraphs make this transition challenging. Secondly, we propose a
greedy algorithm for subjectively interesting pattern mining, and demonstrate its efficacy

through several experiments on synthetic and real-world examples.

3-1This chapter has been published as [Kapoor et al., 2020]: Kapoor, S., Saxena, D.K. & van Leeuwen,
M. Discovering subjectively interesting multigraph patterns. In Mach Learn, Springer, 109, 1669-1696
(2020).
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3.1 Introduction

Over the past decade, researchers have realized that network analysis can be used to
address many real-world problems. Examples include problems related to computer net-
work infrastructure, co-authorship (scientific or other), co-actors (e.g., in movies), trans-
port (road, airline, ...), and even tax evasion [Aggarwal et al., 2010]. This has led to
research on several types of networks, typically modelled as simple graphs (graphs hav-
ing at most one edge between any pair of vertices) and weighted graphs (simple graphs
but with weights on edges). A type of network that, to the best of our knowledge, has
not yet been widely considered in the data mining literature®? is one that needs to be
modelled as a multigraph (graph in which multiple edges can be present between any pair
of vertices). Motivated by an application in aviation, this chapter lays the conceptual
foundations for the discovery of subjectively interesting multigraphs patterns (SIMPs).
SIMPs are defined as those subgraphs that are unexpected and/or contradict an analyst’s
prior beliefs or background knowledge [van Leeuwen et al., 2016]. The rationale for the
representation of an airline network as a multigraph and targeting of SIMPs vis-a-vis

alternative approaches are discussed below.

In an airline network, symbolically depicted in Figure 3.1, there can be several flights
(edges in a graph) between a pair of airports (vertices in a graph), which explains as to
why this network could be modelled as a multigraph®3. Arguably, an airline network
could also be studied as a multilayer graph, where multiple sets of edges are defined on
the same set of vertices. In that setting, each set of edges acts as a unique layer, and
different layers are characterized by different data properties. For instance, between a
pair of airports, multiple flights from different airlines might operate, and each airline’s
flights may constitute a layer, differing from other layers. Notably, multigraphs may
constitute building blocks for multilayer graphs (so far investigated only through simple
graphs [Papalexakis et al., 2013; Qi et al., 2012]). To avoid the added complexity of

32Note that the term multigraph was used before Dong et al. [2012]; Papalexakis et al. [2013], but those

works employ an alternative definition; see next section for details.
33 At this formative stage, our endeavour is to analyse ‘static’ multigraphs (for fixed time intervals),

though the longer-term goal is to analyse dynamic multigraphs.
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multilayer graphs, in this stage the multigraph representation of a network will form the

basis for analysis in this chapter.

Fig. 3.1. An airline transportation network modelled as directed multigraph

Flight delays have punitive implications for airlines. Intuitively, and based on historical
evidence, it is often believed that flight congestion between a pair of airports make them
vulnerable to delays. Yet, delays are a reality, hence, it is critically important to mine the
network data and facilitate scientifically informed assessment and decision making. Efforts
in this direction have been made but they are limited in scope and practical relevance.
For instance, finding objectively dense patterns (where density is defined through k-cores,
cliques, k-plex, maximum average degree, etc.) is a commonly studied problem [Batagelj
and Zaversnik, 2003; Charikar, 2000; Khuller and Saha, 2009; McClosky and Hicks, 2012;
Palla et al., 2005; Tsourakakis et al., 2013]. However, simple graphs do not suitably model
an airline network in the first place. This thesis attempts to overcome this limitation by
focusing on multigraphs. Furthermore, it builds on the premise that capturing events (say,
in terms of delays) which depart from an analyst’s prior beliefs and may be referred as
unexpectedly dense, relative to what the analyst already knows [van Leeuwen et al., 2016],
may be more revealing (say, in terms of source of delay), interesting, and practically
useful. This justifies our focus on SIMPs dedicatedly in multigraph settings, besides the
fact that this conceptual foundation could be useful in several other applications, including

co-authorship analysis.

The structure of this chapter is as follows. Our proposed approach is presented in
Section 3.4, where we formalize the conceptual contributions on SIMPs, and present a

greedy algorithm for the discovery of SIMPs in Section 3.5. Section 3.6 demonstrates
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the efficacy of the proposed algorithm; discusses the properties of the discovered SIMPs;
compares our approach to existing methods on synthetic and real-world data. The chapter
concludes with key observations and future directions in Section 3.7. Notably, we present
a case study in aviation in Chapter 6, highlighting how our approach could help improve

an analyst’s understanding of the problem.

3.2 Preliminaries

A multigraph is denoted by GM = (V, EM), where V is a set of n vertices (usually indexed
using symbol u or v) and EM is a multiset of edges, where each edge e € EM is an
element of V' x V. In contrast to the common simple graph setting, there can be multiple
edges between any pair of vertices. The adjacency matrix for the graph is denoted by
A e N{*", with a,, € Ny equal to the number of edges between u and v. For example,
@y, = 0 means that there are no edges between u and v. This undirected definition can be
straightforwardly extended to a directed multigraph by letting a,, represent the number
of edges from u to v. For the sake of simplicity, in this thesis we focus the exposition on
multigraphs without self-edges, for which it holds that (u,v) € E = u # v, but if desired
this restriction could simply be dropped.

We build on the premise that an analyst knows (or has direct access to) the list of
vertices V in the graph, and is interested in improving self’s knowledge and understanding
of the edges. Thus, the data to be mined is the edge multiset £, and the domain of this
data is Ny™" (further constrained by exclusion of self-loops, implying that the diagonal

values of A have to be 0).

The framework by De Bie [2011b] suggests that prior knowledge (modelled as con-
straints) can be represented as a probability distribution P over the data domain. As
the constraints typically leave many of such distributions possible, the mazimum entropy
(MaxEnt) principle is leveraged to argue that the distribution having the largest entropy
should be used. The framework then quantifies the subjective interestingness of a pattern
as the ratio of information content to description length, where information content is the
negative logarithm of the probability of the pattern given the background distribution,

and description length is the code length required to communicate the pattern to the user.
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In the following, we will build on this framework for multigraph patterns, albeit with a

different definition of subjective interestingness.

3.3 Prior Beliefs and Background Distributions

We here consider and model the following three different types of prior beliefs that an

analyst may have:

1. Total number of edges (Belief-c). The analyst here is assumed to have a prior
belief concerning (only) the total number of edges in the network, e.g., on the total

number of flights in case of airline data. This follows:

> PA) Y . =|EY. (3.1)

AENSLX" u,veV

The MaxEnt distribution with constraint Eq. 3.1 results in a product of independent
uniform geometric distributions, one for each random variable a,,, € Ny (cf. De Bie

[2011D]), where

P(A) = [] exp(2X- auo) - (1 — exp(2))). (3.2)

u,veV
Here, each distribution represented as P, ,(a,,) has a probability of success equal
to [1 —exp(2A)], where A is a Lagrangian multiplier corresponding to the constraint

in Eq. 3.1.

2. Number of edges per vertex (Belief-i). In this case, the analyst is assumed
to have prior beliefs on the row and/or column marginals of the adjacency matrix,
denoted by d;, and d;, respectively. In the airline case, this corresponds to knowing
the total number of flights leaving from (d.) or arriving (d¢) at each airport. This
belief is represented by

> P(A)D au, =4, (Vu), (3.3)

AGNSX” veV
> P(A)D au, =dS. (Vo). (3.4)
AGNSX" ueV
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We observe that the MaxEnt distribution with constraints in Eq. 3.3-3.4 results in

a product of independent geometric distributions given by

P(A) = [T exp(ON, +X0) - @) - (1= exp((N] + A7), (3.5)

u,veV

for each random variable a,, € Njy. This corresponds to the ‘geometric’ case in
[De Bie, 2011b], where each distribution P, ,(a,,) has a probability of success equal
to [1 — exp(AL + X¢)]. Here, A, and X are Lagrangian multipliers following the
constraints in Eq. 3.3-3.4.

. Number of neighbors per vertex (Belief-m). In the third and final case, the

analyst is assumed to have a prior belief about the number of unique neighbors of
each vertex, referred to as m,. In an airline case, this could be considered as the
total number of unique routes on which an airline operates from any airport. This

prior belief is represented as

> PA)Y La,, =mp, (Vu), (3.6)

AeNgX" veV
> PA)Y 1, =mS, (V), (3.7)
AeNg*™ ueV

where 1,,, is the indicator function, which equals 1 if a,, is a non-zero value
and 0 otherwise. This case is a multigraph-specific belief, as in case of a simple
graph d, would be equal to m,, intuitive of the fact that at most one edge can
exist between any two vertices. Hence, we will use this belief to complement the
previous two types of belief. In this chapter, we consider the case where this type
of belief is combined with Belief-i. The MaxEnt distribution P(A) for the data
with constraints in Eq. 3.3-3.4 and Eq. 3.6-3.7 reduces to a product of independent

probability distributions P(A) =[] P, ,(ay,) for each random variable a,, €

uweV
Np, where

[1 - Ru,’U]
[1 = Rup (1= Suy)]

Pyo(aus) = LR S, (3.8)

where, Ry, =exp (A, + X)) and Sy, = exp (pr, + 115) -
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Here A7, XS, i and gl are Lagrangian multipliers corresponding to the constraints
in Eq. 3.3, 3.4, 3.6 and 3.7, respectively. For completeness, a proof of the MaxEnt
distribution P(A) for this case is relegated to Appendix A.1.

The above-mentioned constraints are described for directed multigraphs represented
by A, however for undirected multigraphs u < v should be added as an additional con-
straint. In this chapter, the above three types of prior beliefs or knowledge will be evalu-
ated. However, other types of prior beliefs could also be considered, for example, details
about different airline carrier’s flights arriving or departing from an airport. Though it is
beyond the scope of this chapter, such cases would also lead to a product of independent
probability distributions, which can be used to compute the expected number of edges

between any vertex pair.

3.4 Proposed Approach

Given the prior beliefs of the analyst, the background distribution of the data can be
derived as the MaxEnt distribution [De Bie, 2011b]. We now establish a subjective in-
terestingness measure for multigraph patterns given the background distribution and the

data.

As multigraphs do not have a strict limit on the maximum number of edges that
can occur between any pair of vertices, existing work on simple graphs by van Leeuwen
et al. [2016] cannot be directly extended to multigraphs. We, therefore, introduce a new
definition of interestingness based on the expectation matriz £. In this matrix, of size
|V| x |V|, each entry &,, is defined as the number of expected edges—based on the prior
beliefs—between vertices u and v.

The expectation of any geometric distribution of the form (1—p)®-p for random variable
x € Ny, where p is the probability of success, is given as E(x) = 1]'%1”. The probability

distributions for Belief-c and Belief-i are represented in the natural form of a geometric

exp(2))

exp(AL+AS)
1—exp(2X)

distribution. Thus, we have expectation &,, = T—exp(AL+A0) for

=pand &, =
Belief-c and Belief-i, respectively. Here, p is the density®>* of a graph.

3.4 : _ __ 2x|E] : — |E]
For undirected graphs p = VTaVI=D) for directed graphs p = VAEGAESY)
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The probability distribution for Belief-m, however, cannot be represented in the nat-
ural form of a geometric distribution. Hence, the expected number of edges between
vertices v and v is computed as

P exp(Ay + A7) - exp(py, + p17)
UL = exp(Ar + A9 [1 — exp(Ar + XS) (1 — exp(p, + pus))]

(3.9)

Next, we quantify the interestingness of a vertex-induced subgraph pattern by the
difference between the actual and the expected number of edges. For this, we derive what
we call the gulf matriz G, which is computed as the difference between the adjacency
matrix and expectation matrix, i.e., G = A — &. A value G, , is positive if the expected
number of edges between u and v is lower than the actual number of edges, and negative
in the opposite case. Without loss of generality, we assume that only positive differences
are of interest; one could reverse the signs to discover ‘sparse subgraphs’.

For a given pattern, we sum the deviations over all vertex-pairs it contains, and define

this sum as the aggregate deviation of the pattern, as follows.

Definition 3.1 (Aggregate Deviation) Given multigraph GM = (V, E™) and gulf ma-
triz G, the aggregate deviation AD of a subgraph H = (W, E'), where W C V and
E' C EM | is given by AD(H,G) = > uwew Guw-

One might be inclined to mine subgraphs that maximize AD, but in practice, this is
likely to lead to large subgraphs. This is problematic because large subgraphs may not be
interesting for and/or comprehensible to the analyst. Similar to existing subjective inter-
estingness approaches [De Bie, 2011b; Lijffijt et al., 2016; van Leeuwen et al., 2016], we,

therefore, penalize a pattern’s deviation with its description length, i.e., its ‘complexity’.

Definition 3.2 (Description Length) Given multigraph GM = (V, EM), subgraph
H = (W, E"), and parameter q, the cost required to describe a subgraph to the analyst—in

terms of its vertices—is given by description length DL, defined as

DL(H) =—) log(g)— Y log(l—q)

ueW ugWueV

1— 1
— W] - log (—q> £ IV]-log (—) |
q 1—gq
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where —log(q) is the cost of a vertex included in W and —log(1—q) is the cost of a vertex

excluded from W .

Definition 3.2 uses Shannon-optimal codes to describe the pattern, using a vertex
probability, i.e., parameter ¢, that is set by the analyst in advance. The smaller the
analyst believes the size of an interesting pattern to be, the smaller the ¢ and the smaller
the exclusion cost of a vertex, and the other way around. Once ¢ is fixed then the
description length increases with the size of the pattern as for each added vertex in a
pattern a cost equal to log((1 — ¢q)/q) is added to the description length. Thus, ¢ can be
interpreted as the expected probability that a vertex is included in a random pattern and
is set by the analyst based on expected/desired pattern size. Description length can be
used to penalize larger patterns, for which it is easier to have a large AD.

Ideally, a pattern is considered to be interesting if it is highly informative (quantified
in terms of aggregate deviation, AD) and can be encoded with a short code (measured
in terms of description length, DL). Thus, we next define subjective interestingness of a

pattern as the ratio of its aggregate deviation to its description length.

Definition 3.3 (Subjective Interestingness) Given multigraph GM = (V, EM), sub-

graph H, and gulf matriz G, the subjective interestingness I of H is given by I(H,G) =
AD(H,G)

DL(H) °

Note that in the previous definitions of a subgraph pattern we considered any vertex-
induced subgraph, but this includes subgraphs that consist of multiple components, i.e.,
subgraphs that are not connected. As an analyst will expect patterns to be connected, we
add the constraint that each subgraph has to be connected®®. This leads to the following

problem for finding the subjectively most interesting multigraph pattern.

Problem 3.1 (Subjectively Interesting Multigraph Pattern (SIMP)) Let GM =
(V, EM) be a multigraph and G a gulf matriz. Find a set of vertices W C V' and its cor-
responding vertez-induced subgraph H that maximizes I(H,G) such that H is a (weakly)

connected component.

3-5For directed multigraphs the constraint is relaxed to weakly connected component, i.e., the undirected

equivalent of the directed graph is a connected graph
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3.4.1 Updating the Background Distribution

When a new pattern is found, it is presented to the analyst, which then transforms
the knowledge of the analyst, who learns from the information contained in the pattern.
Hence, these newly learned information should be reflected in the background distribution.
More specifically, in the updated background distribution P’'(A) the expectation of the
number of edges in the pattern should be equal to the actual number of edges found. The
rationale behind this is that, by updating the background distribution in this manner,
the aggregate deviation of the pattern becomes (almost) zero and hence the pattern is no
longer interesting.

Let H = (W, E’) be the communicated pattern, then the updated MaxEnt distribution
is calculated using the following convex optimization problem, which is the I-projection
of the preceding background distribution onto the set of distributions that are consistent

with the communicated pattern [De Bie, 2011a]. Thus, the problem is formulated as

! = argmin 0 %
P(A) = armmin 3= Q () g ( 53 (3.10)
st > QA) Y au, =1E, (3.11)
> QA =1, (3.12)
AeNg<"

where Q represents set of all possible distributions over A and the constraint in Equa-
tion 3.11 represents the acquired belief of the analyst on the data. That is, the vertex-
induced subgraph H, with the set of vertices W, contains |E’| edges. Using this updating
procedure, we can perform an iterative exploratory data mining process: we can mine the
subjectively most interesting multigraph pattern from the data, update the background

distribution, and repeatedly perform these two steps to mine multiple SIMPs.

Theorem 3.1 Let P(A) be a product of independent probability distributions over data
A € NV, then the optimal solution to the problem defined by Equations 3.10-3.12 is

also a product of an independent probability distributions P'(A), such that:

1if P(A) = Tlyuer (1= Pua)®™ P then P(A) = Loy (1= P, P,
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. 1—Ru,v Ay, v Llu,v
2. Zf P(A) = Hu,vEV —1_Ru,v(1_su,v) . u,v Su,v )

—_R! 1,
then P'(A) = 1, uev Tm 5 - (Blw) ™ - Suit”

where
1= (1= puy)exp(An), if (u,0) €W

/

Pyoy =

)

Duv, otherwise

J» Ry, exp(Am), if(u,v) e W
’ Ry, otherwise

Here Ay is a Lagrangian multiplier and a unique real number such that

(1 —puv)exp(Ag) € (01) CR and R, € (0 1) CR.

It is observed that background distribution P(A) can be updated using Theorem 3.1.
For Belief-c and Belief-i claim 1 is followed, while for Belief-m we follow claim 2, where
Ry, =exp(A, + X) and Sy, = exp(pl, + p).

Both claims in Theorem 3.1 follow the same principle, hence for brevity, only the proof
of claim 2 is given in Appendix A.2.

For the computation of aggregate deviation AD, we require to compute the expected
number of edges between two vertices given the background distribution. It is inefficient to
update and store all the expectations every time the background distribution is updated.
It is therefore recommended to only store the Ay and compute the expectation whenever

required. After a series of patterns H = (W, E) are presented to the user p|, , is given by
1= (1= pup)exp <ZH:u,ueW >‘H>7 and R, , is given by R, , exp <ZH:U,UEW >‘H>‘
3.5 Algorithm

To exhaustively solve Problem 3.1, we would have to consider all 2!V! possible subsets of
V', for each subset determine its vertex-induced subgraph, check if it is connected, and
compute its interestingness. As there are hardly any possibilities for pruning this would
lead to very large run-times and we resort to a greedy hill-climber, which was shown to
give good solutions in little time in the simple graph setting [van Leeuwen et al., 2016].
As input Algorithm 3.1 takes a multigraph G, seed subgraph H = (W, E'), gulf

matrix G, and—for efficiency—corresponding interestingness I (i.e., I( H,G)). For directed
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3. Subjective Interestingness of Multigraph Patterns

Algorithm 3.1 Hill Climber

Input: Multigraph dataset GM = (V, EM), seed subgraph H = (W, E'),
gulf matrix G, and interestingness of seed subgraph [
Output: Multigraph pattern H, a heuristic solution to Problem 3.1,
together with its interestingness I
1: procedure HILLCLIMBER(GM, H, G, I)
2: H,, I, + CHECKGRAPHEXTENSION(GM, H, G, 1)

3: if I, > I then

4: H<+ H,, 1+ 1,

5: return HiLLCLIMBER(GM, H, G, 1)

6: else

7 H,,I, < CHECKGRAPHREDUCTION(GM, H, G, I)
8: if I, > I then

9: H+ H., 1+ I,

10: return HILLCLIMBER(GM | H, G, 1)

11: else

12: return H, I
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Algorithm 3.2 Evaluate Graph Extension

1: procedure CHECKGRAPHEXTENSION(GM | H, G, 1)
2: H +— H, I"+1
3: if type(GM) = Undirected then

4: for each u € Neighbors(H,GM)\ W do

5. W' WU {u}, H' « (W', Ely), I' « I(H',G)

6: if I’ >1I1* then H* < H', I* < I

T else

8: for each u € Predecessors(H,GM)\ W,y do

9. Wy < Wou U{ub, W' [Win, W.,], H' « (W', B}, I' < I(H',G)
10: if I' > I* then H* « H', I* « I’
11: for each v € Successors(H,GM)\ W;, do
12: W Win U{v}, W’ [W., Woul, H + (W', EYy), I' < I(H',G)

13: if I' > 1*then H* «+ H', I* «+ I’

14: return H*, I*

multigraphs, each vertex is (virtually) split into two, one having in-degree equal to zero
and the other having out-degree equal to zero, based on which corresponding concepts
Predecessors & OutNode and Successors & InNode, respectively, are defined. Hence,
a directed (sub-)graph has two lists of vertices one of OutNodes, W,,; and the other of
InNodes, W,, thus, W = W,,, U W,:.

Description. Algorithm 3.1 initially tries to add neighboring vertices to the current
subgraph (Line 2). If the addition of any neighbor vertex results in improved interesting-
ness (L3), the addition is consolidated (L4) and the method recurses (L5). Otherwise, the
algorithm eliminates, one by one, vertices from the current subgraph (L7-10) and checks
whether this improves interestingness (L8). When no improvement can be made in any

iteration, the procedure stops (L12).

Algorithm 3.2 and 3.3 are two subroutines that return the best addition or removal
step possible respectively. Function type(GM) determines the type of graph; if the graph
is undirected then vertices are added (Algorithm 3.2, L3-7) or removed (Algorithm 3.3,

L3-7) one by one without distinguishing the type of neighbor as predecessor or successor,
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3. Subjective Interestingness of Multigraph Patterns

Algorithm 3.3 Evaluate Graph Reduction

1: procedure CHECKGRAPHREDUCTION(GM, H, G, 1)

2: H +— H, I"+1

3: if type(G) = Undirected then

4: for each u € W do

5: W'« W\{u}, H < (W', Ey), I' < I(H',G)

6: if I'>T1*then H* «+ H', I* « I

T else

8: for each u € W,,; do

9: Whw < Wou \ {u}, W [Wip,, W), ], H < (W', E}), I' < I(H',G)
10: if I'>1*then H* «+ H', I* + I

11: for each v € W;,, do

12: W! — Wi, \{v}, W« W} Wou], H < (W', EY), I' < I(H',G)

13: if I'>T1*then H* + H', I* + I

14: return H*, I*

unlike in the case of directed graphs (Algorithm 3.2, 3.3; L8-13).

The proposed hill-climber, which is a greedy heuristic, may experience problems due
to locally converging to a sub-optimal solution. This largely depends on the choice of
seed (initial subgraph) provided to the algorithm. To overcome this pitfall, we propose
to independently run the hill-climber for k£ different seeds and choose the best solution
among the k returned patterns. The seeds can be chosen on the basis of different criteria;

we consider the following three:

1. Degree: Select the top-k vertices having the highest degrees in the graph, where

each individual vertex as a singleton graph is used as a seed once.

2. Uniform: Select k different vertices at random, where each individual vertex is

used as a seed once.

3. Interest: Use the & most interesting vertices and use each of those individually as
seed. The interestingness of a vertex is calculated as the subjective interestingness I

of the vertex-induced subgraph of the vertex together with its immediate neighbors.
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It is intuitively beneficial but cost-inefficient to evaluate all possible seeds (i.e., to use
each vertex in a graph as independent seed). We demonstrate the effectiveness of the

above-described seed selection strategies in Section 3.6.

Complexity. In a single iteration of the hill-climber interestingness computation is
the most costly part of the computation and has complexity O(|W|?), as aggregate
deviation computation requires to sum elements in the gulf matrix. We can, however,
maintain a list of potential vertices that can be added to the current subgraph, along
with the potential gain in aggregate deviation associated with each candidate vertex.
These potential gains are updated upon addition or removal of a vertex from the current
subgraph, which has complexity O(|V]). As the complexity of the search procedure is
identical, the resulting overall complexity is O(|V]).

3.6 Experiments

In this section, we evaluate our proposed approach and compare it to related methods.
To distinguish the results obtained using different types of prior beliefs, we denote our
proposed approach using the background distribution given by Belief-c as SIMP-c; by
Belief-i as SIMP-i; and by Belief-m as SIMP-m. For the experiments we use both synthetic

and real multigraphs.

Datasets. We generate synthetic datasets in two steps. First, a simple, undirected
graph is generated using the preferential attachment method by Barabasi and Albert
[1999]. Second, a randomly generated sequence is used to add parallel edges to make it
a multigraph. This sequence has a length equal to the number of edges in the simple
graph, and is a combination of a Bernoulli (parameterized by the probability of success
py) and geometric distribution (parameterized by p,). The former determines whether
parallel edges are added, while the latter determines how many parallel edges are added
to the vertex-pair indicated by the index in the sequence (if any). For the Barabési-Albert
model, parameter [ is used to define the maximum number of vertices to which a newly
inserted vertex should be connected. Parameter values and properties of the resulting
four synthetic datasets are shown in Table 3.1, where superscripts S and M refer to the

initial simple graph and the final multigraph, respectively.
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3. Subjective Interestingness of Multigraph Patterns

Table 3.1. Properties of the multigraph datasets: number of vertices (|V]), number of edges
(|EM|), number of edges in a simple graph projection (|E°|), probabilities of success for gener-

ating multigraph sequences (py and py), and Barabési-Albert model parameter (1).

DS »w pg V] EM| Joxd

SYN1 0.2 040 10 200 2628 1900
SYN2 0.2 0.65 10 1000 12977 9900
SYN3 0.4 0.80 10 10000 149729 99900
SYN4 0.2 0.65 10 50000 653821 499900

DBLP1 - - - 5271 19888 16847
DBLP2 - - - 6956 23879 20837
DBLP3 - - - 18466 98493 78699
DBLP4 - - - 65074 230006 202642
IMDB - - - 4644 13416 12702

From the DBLP3¢ data, we generate a co-author graph, where authors are represented
as vertices and co-authored publications as undirected edges. Due to its large size, we
have created multiple datasets from the data using different queries: 1) all conference
publications of October 2017 (DBLP1) and July 2017 (DBLP2); 2) all publications of
the top-2037 conferences of Data Mining, Machine Learning and Artificial Intelligence in
2016-2017 (DBLP3); and 3) all journal publications of May 2017 (DBLP4). To obtain
the IMDB?® dataset we build a co-actor graph, where actors are represented as vertices
and common movies as undirected edges. For each dataset, we only consider the largest

connected component.

Evaluation criteria. We characterize the results using several commonly used sub-
graph properties: the number of vertices |V|; the number of edges |F|; density p, given
by (2 x |E|)/(|V| x (V| — 1)); average degree n, given by 2 x |E|/|V]; and diameter
d. Further, to demonstrate the benefits of considering multigraphs over simple graphs,

we ‘project’ the multigraph patterns, indicated by superscript M, to their simple graph

3-6source: https://dblp.uni-trier.de/

3Tsource: https://scholar.google.co.in/citations?view_op=top_venues&hl=en&vq=eng

38source: https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
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3.6. Experiments

counterparts, indicated by superscript S, by removing any ‘parallel’ edges between each
vertex-pair. We then define a new measure, denoted v, to quantify the number of parallel

edges in a subgraph relative to the number of vertices in a subgraph: (|[EM| —|E%])/|V].

3.6.1 Prior Beliefs and Interestingness Evaluation

The different types of prior belief that we defined reflect different types of knowledge an
analyst may have. Here we demonstrate the different effects of the proposed types of prior
beliefs. The expectation on the number of edges between two vertices (or the probability
distribution) varies with the prior knowledge as quantified using the maximum entropy

principle (shown earlier).

Belief-i Belief-m
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Fig. 3.2. Heatmap showing the expected number of edges between all pairs of vertices (£) for the

toy example (Fig. 3.1) w.r.t. Belief-i and Belief-m (dark colour represents higher expectations).

Belief-c results in a uniform distribution with equal expectation for all pairs of vertices.
Thus, a subgraph with high average vertex degree would be considered most interesting
under this type of belief, which is confirmed by the co-occurrence of high values of both
interestingness (I-c) and average degree (n) in Table 3.3.

Belief-i and Belief-m represent more extensive forms of prior knowledge than Belief-c.
Using the toy data set from Figure 3.1, the expectation between all pairs of vertices is

shown in Figure 3.2 for both Belief-i and Belief-m. With Belief-i, it can be seen that
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3. Subjective Interestingness of Multigraph Patterns

the highest expectation on the number of edges is for vertices C and E, as C has the
highest number of outgoing edges and E has the maximum number of incoming edges
in the graph. As subjective interestingness is defined as the positive deviations from the
expectation, this type of belief usually leads to dense patterns (as can be witnessed from
Table 3.3). Belief-m is more profound than Belief-i, as here the analyst has additional
information on the number of unique neighbors for each vertex. With the addition of
a new constraint, the expectation between vertices C & E decreases, as C has only two
successors, which is compensated for by an increased expectation for the number of edges
between vertex pairs C & A and C & B. In this particular case, these expectations are

much closer to the actual values.

3.6.2 Description Length and Seeding Strategy Evaluation

In this subsection, we empirically demonstrate the effect of the value of parameter ¢ as
used in the description length. For most of the datasets, including the larger graphs, a
value of 0.01 was found to be robust as it results in moderately sized patterns. Note that
this corresponds to a belief that a pattern is expected to consist of 1% of all vertices in a
graph. For the DBLP1 dataset, the effect of varying ¢ is shown in Figure 3.3. The plots
demonstrate how ¢ can be used to influence pattern size as desired by the analyst. For

the remainder of the chapter, we fix ¢ to 0.01.

Next, we perform experiments on datasets SYN1, SYN2, DBLP1 and DBLP2, for
different number of independent runs (represented by k) and for each type of seeding
strategy. The results, aggregated over the four mentioned datasets, are shown in Table 3.2
(mean interestingness score and sum of the runtimes). We can observe that, in general,
the highest mean subjective interestingness (I) was found using the interest-based seed
selection strategy, followed by the degree based strategy, for all three types of belief.
Further, we observe that the extra runtime needed for using all individual vertices as
seeds is substantially larger than the improvement in subjective interestingness. The
results show that £ = 10 provides an adequate trade-off, saving substantially on runtime
while hardly giving in on subjective interestingness. Hence, for all remaining experiments,

we will use the interest-based seeding strategy with £ = 10 independent runs.
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3. Subjective Interestingness of Multigraph Patterns

Table 3.2. Mean subjective interestingness (I) of the best pattern found using SIMP-c, SIMP-i,
and SIMP-m, for ‘Interest’, ‘Degree’ and ‘Uniform’ seed selection strategies, with corresponding

runtimes (in seconds).

k 1 10 50 All
Belief
Seed Type I Time 1 Time I Time I Time
Interest 1.799 3.84 1911 23.03 1.915 108.47
SIMP-c  Degree 1.304 2.02 1.911 19.35 1.916 118.27 1.919 2758
Uniform 0.844 2.62 1.453 26.75 1.456 124.69
Interest 1.592 2.26  1.602 3.50 1.602 9.41
SIMP-i Degree 0.781 0.13 1.511 1.03 1.602 6.32 1.607 412

Uniform 0.439 0.33 0.720 1.66 1.156 7.54

Interest 1.015 2,50 1.170 5.27 1170 1347
SIMP-m Degree 0.628 0.22 1.150 1.68 1.163 9.98 1.173 591
Uniform 0.449 0.24 0.717 4.80 1.094 13.67

3.6.3 Quantitative Evaluation

In this section, we demonstrate that 1) our proposed subjective interestingness mea-
sure is different from existing measures designed for simple and multigraphs, and 2) the
hill-climber finds subgraphs with large subjective interestingness scores. We empirically
compare to 1) the modularity-based approach by Clauset et al. [2004] and 2) subjective
interestingness for subgraphs (SSG) [van Leeuwen et al., 2016], as those are the closest
to our approach and representative for the classes of methods they belong to. Note that
neither is designed for mining patterns from multigraphs; we compare to these methods
nevertheless to demonstrate that the task of mining patterns from multigraphs is very
different from mining patterns from simple (unweighted or weighted) graphs in important
ways, and therefore deserves the attention it gets in this thesis.

Since SSG is designed for simple, unweighted graphs, the datasets are converted to
simple graph by removing parallel edges. For fair comparison on the task of mining multi-
graphs, the evaluation criteria are computed on the original multigraph. For the method

by Clauset et al. [2004], to which we will also refer as CNM, we use its implementation in
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Table 3.3. Properties (see text) of the best pattern found by each method.

DS Method V] |EM| | E5] I.c I Im p n d ¥
SIMP-c 31.66 400.50 205.00 1.51 0.78 094 1441 24.77 290 6.34
SIMP-i 5.42 40.46 722 103 094 121 5468 1531 238 6.50

E SIMP-m 4.72 35.18 598 098 0.76 1.26 5.964 15.00 2.08 6.39
f>f; SSG-c 10.98 64.23 4890 0.77 021 020 1170 11.69 1.88  1.39
SSG-i 3.70 6.24 458 068 032 028 129 330 1.36 0.46
CNM 30.54 159.83 98.95 032 043 0.39 0.360 10.34 3.40 2.00
SIMP-c 90.74  1123.52 775.00 1.65 047 048 0279 24.75 302 3.85
SIMP-i 18.84 101.44 39.60 131 0.61 059 0752 10.79 3.88  3.41
g SIMP-m 23.02 147.16 66.96 139 054 0.65 0.691 1251 3.56 3.56
% SSG-c 24.92 216.14 167.86 1.40 0.18 0.17 0.730 17.25 2.00 1.93
SSG-i 6.22 11.60 9.00 1.07 0.21 0.22 0.770 3.61  2.30 0.40
CNM 116.19 610.35 371.32 037 0.52 050 0.095 1045 491 2.06
SIMP-c 381.60  5806.46  3626.30 2.09 0.51 0.54 0.080 30.44 392 5.72
SIMP-i 175.50  1135.00  546.70 145 0.67 0.61 0.075 1292 506  3.35
2 SIMP-m 161.46  1414.60 735.78 141 064 0.77 0.111 1755 4.36 4.21
?;1 SSG-c 79.78 956.40 703.62 1.65 0.61 0.43 0.304 2398 3.00 3.16
SSG-i 30.84 58.72 4448 1.02 036 0.31 0.130 3.79  6.36 0.46
CNM 903.89  4480.05  2589.45 0.38 0.52 0.48 0.010 9.89 6.85 2.09
SIMP-c  1052.20 14422.60 9951.30 1.80 0.74 0.68 0.030 27.42 4.00 4.25
SIMP-i 324.30  2864.42 541.68 143 0.91 0.88 0.055 1759 9.11 6.70
E SIMP-m  418.45  3918.32 898.45 1.66 0.87 0.99 0.045 1873 812 6.81
?;) SSG-c 280.36  3535.70  2705.70 1.35 0.14 0.17 0.090 2521 3.02 2.96
SSG-i 164.08 267.60 207.06 1.08 0.15 0.18 0.020 3.28 12.00 0.37
CNM 4303.55 21044.65 12138.40 0.41 0.51 0.42 0.002 9.73 945 2.07
SIMP-c 15 524 105 2.98 289 131 4.990 69.87 1.00 27.93
SIMP-i 15 524 105 298 2.89 131 4.990 69.87 1.00 27.93
E SIMP-m 18 406 125 291 287 1.38 2.654 4511 2.00 15.61
g SSG-c 20 192 190 092 0.89 0.76 1.011 19.20 1.00 0.10
SSG-i 20 190 190 091 0.90 0.78 1.000 19.00 1.00 0.00
CNM 532 2010 1696 0.45 0.49 042 0.014 7.56  7.00 0.59
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Table 3.3. (Continued) Properties (see text) of the best pattern found by each method.

DS Method |V| |EM| |EY| I-c I-i  I-m p n d v
SIMP-c 30 448 435 1.49 1.46 142 1.030 29.87  1.00 0.43
SIMP-i 30 448 435 1.49 1.46 1.42  1.030 29.87  1.00 0.43

g SIMP-m 30 448 435 149 146 1.42 1.030 29.87  1.00 0.43
g SSG-c 30 448 435 1.49 1.46 142 1.030 29.87  1.00 0.43
SSG-i 30 448 435 1.49 1.46 1.42  1.030 29.87  1.00 0.43
CNM 307 998 856 0.42 0.45 0.41 0.021 6.50 12.00 0.58
SIMP-c 140 14626 9692 12.23 9.48 10.31 1.503 208.94 2.00 35.24
SIMP-i 142 14780 9843 12.22 9.49 10.30 1.476 208.17  2.00 34.77
é SIMP-m 140 14626 9692 12.23 9.48 10.31 1.503 208.94 2.00 35.24
g SSG-c 104 8215 5356 8.58 9.40 9.39 1.534 15798 1.00 27.40
SSG-i 139 14488 9591 1219 9.45 10.29 1.511  208.46 1.00 35.23
CNM 369 18320 13283 6.72  5.22 5.04 0.270 99.30  5.00 13.68
SIMP-c 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18
SIMP-i 71 1663 1653 1.06 1.17 1.13  0.669 46.85  2.00 0.14
é SIMP-m 71 1663 1653 1.06 1.17 1.13 0.669 46.85  2.00 0.14
% SSG-c 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18
SSG-i 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18
CNM 3905 13455 11255 0.44 0.46 0.43 0.002 6.89 19.00 0.56
SIMP-c 137 1037 837 1.05 0.46 0.43 0.111 15.14 4.00 1.46
SIMP-i 85 560 425 0.91 0.57 0.53 0.157 13.18 4.00 1.59
g SIMP-m 86 543 451 091 0.56 0.54 0.149 12.63  3.00 1.07
E SSG-c 72 480 410 0.87 0.44 0.43 0.188 13.33  3.00 0.97
SSG-i 11 18 16 0.13 0.13 0.12 0.327 3.27  4.00 0.18
CNM 657 2397 2113 0.42 0.31 0.26 0.011 7.30  7.00 0.43

For each combination of dataset and property the best value obtained by any method

is highlighted in bold
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iGraph®?, which supports weighted graphs. We transform each multigraph to a simple,
weighted graph by replacing each ‘multi-edge’ with a single edge, with the number of
edges as weight. Further, to be able to designate a ‘most interesting pattern’ for CNM,
the pattern giving the highest mean score according to SIMP-c, SIMP-i and SIMP-m is
used. Note that this comparison is very favorable for CNM’s method, as we consider all
patterns that the method generates, versus only the top-1 pattern discovered by SIMP
(). For synthetic data, we present averages over the most interesting patterns found on
50 different multigraphs, obtained using different seeds for multigraph generation.

Table 3.3 presents the results. The I-c, I-i and I-m columns show that our proposed
hill-climber, by optimizing our multigraph interestingness measure on the multigraph
data, was able to find subgraphs with higher scores than SSG and CNM, for all prior
beliefs. The patterns found by SSG, however, are much smaller and have very few parallel
edges, as witnessed by low values for +. In general, all three of the proposed method—
SIMP-c, SIMP-i, and SIMP-m—discover patterns with more parallel edges than the two
baseline methods. For DBLP2 and DBLP4; CNM found patterns with the largest v, but
those patterns are very large and sparse, indicating that these are hardly informative. For
some of the DBLP and IMDB datasets, the advantage of SIMP is quite large in terms of ~.
Finally, the patterns found by SIMP-c, SIMP-i, and SIMP-m do not typically have a high
density (p), which demonstrates that the proposed measure is different from (‘objective’)
density.

Overall, it is shown that although SSG and SIMP are built on the same principles,
they clearly quantify subjective interestingness of patterns differently, which leads to the
identification of different patterns. While SIMP focuses on the occurrence of parallel
edges, SSG only focuses on patterns with a smaller diameter. CNM provides similar
results to SIMP-i, yet it yields large pattern as partitioning the dataset does not provide
the user with an option to control the size of the patterns. Moreover, CNM’s modularity
measure necessarily always assign all vertices to a pattern, while SIMP-i can easily find
few patterns containing only part of the graph.

It is also interesting to compare the results obtained by SIMP-c, SIMP-i, and SIMP-

3-9https://igraph.org/
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Table 3.4. Properties of the top-10 patterns found by SIMP-c¢, SIMP-i, and SIMP-m, indicating
the total computation time, the fraction of the vertices of the multigraph covered by all patterns

combined, and the average Jaccard distance between all pairs of vertex sets.

DataSet Time (in seconds) Coverage AvgJaccard

SIMP-¢ SIMP-i SIMP-m SIMP-¢c SIMP-i SIMP-m SIMP-c¢ SIMP-i SIMP-m
SYN1 6.93 6.51 749 32.77%  21.82% 24.17% 0.95 0.90 0.96
SYN2 312.5 61.3 108.6 27.97%  16.01% 18.16% 0.93 0.95 0.97
SYN3 2674 2394 2462.9 11.34% 8.78% 9.89% 0.97 0.98 0.99
SYN4 8634 8435 8876 8.57% 6.54% 7.12% 0.94 0.97 0.98
DBLP1 871.8 828.8 835.6 3.09% 3.23% 2.98% 0.99 1.00 0.98
DBLP2 1025 1014 1024 3.16% 3.08% 3.18% 1.00 1.00 1.00
DBLP3 7443 7828 7522 2.66% 2.53% 2.58% 0.97 0.94 0.98
DBLP4 12659 11765 11828 1.08% 1.04% 1.05% 1.00 1.00 1.00
IMDB 493.8 215.1 276.5 12.64% 6.54% 6.98% 0.91 0.94 0.90

m. For almost all datasets, SIMP-c finds the pattern with the largest average multigraph
degree, i.e., 1, which is as expected since only a prior belief on the total number of
edges in the network is assumed; all information on individual vertex degrees is assumed
unknown. As expected, 7 is smaller for SIMP-i and SIMP-m results, and on the synthetic
data SIMP-i and SIMP-m typically finds smaller subgraphs with larger densities and
diameters. However, there is a trade-off among SIMP-c, SIMP-i, and SIMP-m for the
measures p, 7, d and v, which demonstrates the flexibility of our proposed approach,

where plugging in different prior beliefs lead to different results.

3.6.4 Qualitative Evaluation

In this section, we first demonstrate how iterative pattern mining results different yet
partially overlapping patterns, and then present an external validation of the patterns
found on the IMDB dataset.

Iterative pattern mining. As discussed in Subsection 3.4.1, our approach can be
naturally utilized for iterative exploratory data mining to identify the top-K patterns in
a multigraph. Table 3.4 shows the properties of the top-10 patterns found using SIMP-c,
SIMP-i and SIMP-m. The patterns are evaluated based on total computation time taken
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to find the ten patterns, coverage (i.e., the percentage of all vertices in a multigraph
dataset covered by the union of the found 10 patterns), and average Jaccard (AvgJaccard)
distance among the found patterns. The total computation time is mainly dependent on
the size of the dataset and the expected size of the pattern by the analyst (altered with
the supplied parameter ‘¢’ used in description length; not shown). The results show that
the proposed approach can be easily used on moderately large datasets, with around
two hours of computation time needed to find the top 10 patterns in the most densely
connected graph, SYN4. This time includes the initial computation of the background
distribution, searching for the most interesting pattern with ten independent runs (seeds)
of the hill-climber, and updating the background distribution after each iteration. The
coverage values indicate that the proposed method finds patterns in different regions of
the graph; the exact coverage varies depending on the dataset, its topology and its size.
At the same time, the high AvgJaccard value indicates that overlap is largely avoided but

small overlaps among vertex sets do occur.

In terms of runtime, updating the background distribution hardly affects the perfor-
mance of the algorithm. The main factor affecting this step is the computation of a
Lagrangian multiplier corresponding to the found pattern, which is computed using the
bisection method—in practice this method is very fast compared to the overall runtime
of the algorithm. Updating the background distribution in every iteration is essential to
the process, as we can demonstrate empirically. That is, by updating the background
distribution, the code length of the data—i.e., the number of bits required to encode the
data under the background distribution—is expected to decrease; this can be regarded to

represent the effect of learning based on the found patterns.

To investigate this, Figure 3.4 depicts the decrease in normalized code length of the
IMDB dataset, for SIMP-¢, SIMP-i, and SIMP-m, after each consecutive update of the
background distribution. The code length of data A is given by —log, P(A), and in
the plot, this is normalized by the code length of the data without any update, i.e., the
length computed before learning but based only on the prior beliefs. We can observe that
the negative loglikelihood of the data decreases over time, as the background distribution

is updated using the found patterns. This clearly demonstrates how each consecutive
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Fig. 3.4. Normalized code length of the IMDB dataset after each performed update, showing
how each consecutive pattern adds new information to the set of patterns that is mined and

therefore results in a shorter code for the data.

pattern adds new information to the set of patterns that is mined. Further, the relative
decrease in code length is larger for SIMP-c than for SIMP-i and SIMP-m, which is also
completely in line with our expectations as Belief-i and Belief-m represent more elaborate
forms of prior knowledge; hence there is less to learn from the data.

External validation. In Table 3.5 we investigate how the found patterns are different
and whether they could be meaningful to a domain expert. In the IMDB co-actor network,
each edge corresponds to a movie in which the two actors (represented by the vertex pair)
have worked together. Clearly, this naturally fits the multigraph setting, as co-actors
can work together in multiple movies and each movie can be of a different genre. Genre
information is not considered in the construction of the dataset or the prior belief and we,
therefore, use this attribute to externally and objectively validate the semantics of the
found patterns. For validation, we consider 26 different genres and the top-10 patterns
found by SIMP-i, SIMP-m, SSG-i, and CNM. For each combination of genre and pattern,
we conduct a hypergeometric test to assess whether a genre is significantly associated
with the pattern. We compute the corresponding p-values and multiply them by the
total number of tests per pattern, i.e., 26, as Bonferroni correction. All genres that are
positively associated, i.e., have a p-value smaller than the threshold of 1e—4, are shown
for the top-10 patterns found by each of the four methods.

It is observed, in Table 3.5, mostly patterns found by SIMP-i and SIMP-m have more

than one positively associated genre. This is mainly because of the presence of parallel
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Table 3.5. Genres that are positively and significantly associated with the top-10 patterns found by SIMP-i, SIMP-m, SSG-i, and CNM,

from the IMDB dataset, along with their respective Bonferroni corrected p-values (< le—4) (between brackets).

SN SIMP-i SIMP-m SSG-i CNM
Adventure(2.1e-7),
Drama(0.0e+0), Crime(5.4e-10), Thriller(6.2e-16), Action(8.4e-6), Adventure(2.7e-12), Action(1.1e-5),
1 Adventure(1.9e-7) Drama(1.8e-14),
Romance(2.2e-6) Crime(2.8e-8)
Thriller(8.5¢-8)
Adventure(0.0e+0), War(1.1e-12), Sci-Fi(5.9¢-49), Action(1.1e-95),
2 Family(2.0e-45), Thriller(0.0e+0), History(7.2e-10), Crime(9.0e-73), Sci-Fi(7.9e-12), Action(2.2e-8) Drama(1.9e-6) Comedy(1.3e-39)
Romance(1.7e-96), Sport(8.7e-9), Biography(2.7e-20)
Adventure(3.5e-61), Sport(6.3e-8), Sci-Fi(3.8e-36), Fantasy(2.4e-37),
Adventure(2.0e-5), Action(5.4e-9), .
3 Family(3.6e-39), Action(1.3e-58), Crime(5.3e-52), Horror(1.5e-35), — Music(6.1e-11)
Crime(1.2e-5)
Thriller(1.8e-94)
Adventure(1.7e-8), Fantasy(7.1e-9),
4 Romance(4.7e-10), Comedy(1.6e-11) — —
Romance(2.0e-6)
Thriller(1.6e-22), Family(1.4e-7), Fantasy(6.0e-11), Sci-Fi(1.1le-11), Adventure(7.2e-5), Fantasy(2.0e-16),
5 Horror(6.3e-17) —
Action(2.4e-13), Crime(7.3e-9), Comedy(1.4e-42), Adventure (4.2e-14) Family(3.3e-8)
Adventure(2.2¢-6),
6 Action(2.2e-11), Crime(6.0e-21), Sport(3.8e-13) Sci-Fi(3.8e-15), Action(1.0e-5) —
Action(8.4e-5)
7 History(8.6e-10), Crime(9.2e-5), Action(6.5e-15), Thriller(9.7e-12) Adventure(1.1e-10) Action(7.4e-13) Action(1.4e-6)
8 Music(4.3e-11), Drama(1.7e-8) Romance (6.1e-9) Documentary (8.1e-7) —
9 Action(4.3e-21), Horror(1.1e-7), Comedy(1.4e-40) Action(5.3e-17), Crime(7.4e-7) Western(5.8e-22) —
. History(7.0e-11),
10 Fantasy(1.2e-15) Thriller(4.0e-6) —

Action(3.4e-12)
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3. Subjective Interestingness of Multigraph Patterns

edges that correspond to different genres; two actors can work together in numerous movies
that belong to different genres. The patterns found by SSG-i are mostly associated with
one or no genre. This is indicative of the fact that SSG, by definition, considers patterns
with a smaller diameter as more interesting, which is different from the proposed approach
for multigraphs. CNM, on the other hand, was able to find patterns with more than one
significantly associated genre, but not every pattern was significantly associated with one
or more genres. This might be explained by the fact that CNM partitions the entire graph
into several communities, which results in relatively large patterns that do not correspond
to certain genres. The results show that the patterns found by each method are different;

both SIMP variants tend to find patterns that more strongly correspond to genres.

We further investigate the patterns found by SIMP-m by visualizing the resulting
patterns in Figure 3.5. From the figures, we can observe that our approach succeeds
in exploiting information about multiple edges between vertices, which results in the
discovery of distinct yet partially overlapping patterns. From Table 3.5 we observe that
patterns 1 and 3 are associated with the same set of genres, which might indicate that
they are redundant or might be merged. Figure 3.5 shows that these patterns indeed share
some vertices and edges, but are also different. Inspecting the data in more detail, we find
that the actors with the highest degree in pattern 1 (but not in pattern 3) include Johnny
Depp, Bruce Willis, Julia Roberts, and Robert Duvall. Similarly, actors present only in
pattern 3 include Tom Hanks, John Ratzenberger, Delroy Lindo, and Sylvester Stallone.
The overlapping region includes actors with very high degrees: Brad Pitt, J.K. Simmons,
Morgan Freeman, and Kristen Dunst. Considering actor’s Facebook likes, another feature
present in the data, we find that the actors in pattern 1 (but not in pattern 3) have 8994
likes on average, versus 2973 on average for the actors in pattern 3 (not in pattern 1). The
actors shared by both patterns on average have 10453 likes. Further, we also find that
the union of patterns 1 and 3 would give an I-m of 0.503, which is clearly less than that
of pattern 1, i.e., 0.538. All combined, the above analysis provides sufficient evidence to
claim that pattern 1 and 3 indeed represent different, non-redundant ‘actor communities’,

and are therefore rightfully considered to be two distinct patterns by our approach.
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(a) network representation, with vertices present in more than one pattern shown in

black colour (note that multiple edges between vertex pairs are depicted as a single

edge to avoid cluttering the graph; see the other subfigures)

25 10 90

80

10
2".. 20 8 ] 70
0 e N . 7 W N 60

O

C C
o sl a o[/l 50
5 i. I w0 B i. ] 40
-30
sl H . e H
Pl | N 7l | NN 10
(N | [ | | N | N 0

1 2 3 45 6 7 8 910 1 2 3 45 6 7 8 910
Pattern Pattern

(b) pattern overlap in terms of vertices: for each (c) pattern overlap in terms of edges: for each
pair of the top-10 patterns, the heatmap shows pair of the top-10 patterns, the heatmap shows
the number of vertices that are part of both the number of edges that are part of both pat-
patterns, i.e., |[W; N Wa| for every two mined terns, i.e., |E] N E}| for every two mined sub-

subgraphs Hy, Ho graphs Hq, Ho

Fig. 3.5. Visualization of the top-10 patterns (numbered as per Table 3.5) found by SIMP-m in
the IMDB dataset.

ol



3. Subjective Interestingness of Multigraph Patterns

3.7 Summary

We proposed a novel subjective interestingness measure for subgraphs in multigraphs,
taking into account both the given multigraph and different types of prior beliefs that the
analyst may have. For the background distributions we used existing ideas based on the
maximum entropy principle, but to quantify interestingness for multigraph patterns we
used the properties of the background distribution to derive an expected number of edges
for each pair of vertices. Following this, we proposed an effective hill-climber algorithm for
mining the most interesting pattern from the data. Our experiments demonstrated that
our subjective interestingness measure for multigraphs is different from existing definitions
for other types of graphs, highlighting the benefits of taking the specific properties of
multigraphs into account. The proposed algorithm was naturally extended for iterative
exploratory data mining process. Using this characteristic of the proposed algorithm a
number of overlapping yet different patterns were shown to be found. Also, the proposed
algorithm was found to be scalable and accurate in iteratively finding interesting patterns.
In the following chapters, we extend our approach to dynamic graphs. We also anticipate
to explore the application possibilities of the proposed algorithm in the airline domain,

which we will do in Chapter 6.
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Chapter 4

Subjective Summarization of Evolving Simple

Graphs

Many real-world phenomena can be represented as dynamic graphs, i.e., networks that
change over time. The problem of dynamic graph summarization, i.e., to succinctly
describe the evolution of a dynamic graph, has been widely studied. Existing methods
typically use objective measures to find fixed structures such as cliques, stars, and cores.
Most of the methods, however, do not consider the problem of online summarization,
where the summary is incrementally conveyed to the analyst as the graph evolves, and

(thus) do not take into account the knowledge of the analyst at a specific moment in time.

In this chapter®!, we address this gap in the literature through a novel, generic frame-
work for subjective interestingness for sequential data. Specifically, we iteratively identify
atomic changes, called ‘actions’, that provide most information relative to the current
knowledge of the analyst. For this, we introduce a novel information gain measure, which
is motivated by the minimum description length (MDL) principle. With this measure, our
approach discovers compact summaries without having to decide on the number of pat-
terns. As such, we are the first to combine approaches for data mining based on subjective
interestingness (using the maximum entropy principle) with pattern-based summarization

(using the MDL principle).

We instantiate this framework for dynamic graphs and dense subgraph patterns, and
present DSSG, a heuristic algorithm for the online summarization of dynamic graphs by
means of informative actions, each of which represents an interpretable change to the
connectivity structure of the graph. The experiments on real-world data demonstrate

that our approach effectively discovers informative summaries.

41This chapter has been published as [Kapoor et al., 2021]: Kapoor, S., Saxena, D.K. & van Leeuwen,
M. Online summarization of dynamic graphs using subjective interestingness for sequential data. In Data

Min Knowl Disc, Springer, 35, 88126 (2021).
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4. Subjective Summarization of Evolving Simple Graphs

4.1 Introduction

Many real-world phenomena, including interactions between people (e.g., social media,
e-mail), web browsing, transport and logistics operations, and asset management, can be
modelled in terms of the relationships between entities. That is, the corresponding data
can be naturally represented as a network or graph, where vertices represent the entities
and edges represent their relationships. When these relationships change over time, the

graphs are called dynamic graphs.

The problem of static graph summarization has been widely studied, e.g., to efficiently
store large volumes of data [Navlakha et al., 2008]; improve query efficiency [LeFevre and
Terzi, 2010]; visualize large graphs [Koutra et al., 2014]; and provide high-level descrip-
tions [Goebl et al., 2016]. Some of the popular methods rely on compression [Koutra
et al., 2014], aggregation of vertices/edges [LeFevre and Terzi, 2010], or finding meaning-
ful patterns [Goebl et al., 2016].

The need to incorporate the temporal dimension has led to the introduction of the
problem of dynamic graph summarization. Lately, this problem has gained much atten-
tion. Here, the focus is on finding a minimal set of temporal structures that describe a
dynamic network or graph. A typical way to achieve this is by considering a dynamic
network as a sequence of static graph states/snapshots [Adhikari et al., 2017; Shah et al.,
2015; Sun et al., 2007] and subjecting those to static graph summarization methods.
Such sequences of static graphs, constructed by segmenting a dynamic graph into differ-
ent states, can be referred to as sequential data. For instance, the method proposed by
Shah et al. [2015], namely TimeCrunch, extends VoG, a method for static graph summa-
rization by Koutra et al. [2014]. Tt creates a summary by stitching together the graph
structures found in different snapshots while minimizing the global description length of
the dynamic network. TimeCrunch uses a predefined vocabulary of graph structures,

including cliques, stars, cores, and bipartite cores.

Most existing methods, however, do not consider the problem of subjective online sum-
marization, where the summary is iteratively and incrementally conveyed to the analyst

as the graph evolves. In that, the analyst is progressively updated on all changes up to
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the current state of the network, relative to his/her prior knowledge. This problem has
two key characteristics that differentiate it from posthoc summarization and therefore
require a different approach. First, at any state, it s only possible to use data that has
been observed until this very moment; it is impossible to use parts of the dynamic graph
that lie in the future. Second, each change that is observed and communicated to the

analyst should be relative to what that analyst already knows about the graph.

One motivation for such an approach comes from airline network analysis, where ver-
tices represent airports and (directed) edges represent operating flights or routes between
two airports. As the edges in an airline network change with time, it can be considered
as a dynamic network. Here, an analyst may be interested in learning the informative
changes, for example, as to how the traffic load is changing in real-time between differ-
ent airports. An airline schedule is generated based on comprehensive knowledge on air
traffic load management [Bazargan, 2016]. Hence, a domain analyst may well have prior
knowledge/expectation at the block-hour level, of the total number of routes operated by
an airline, total number of flights, number of unique routes from each airport, or even the
densely connected set of airports. However, delays are a reality, as the schedules are not
necessarily robust enough to perfectly factor and accommodate them. Hence, a compact
and subjective online summarization bears real-time utility for airliners. It is critical to
note that the application and utility of this approach is not limited to airline domain but
spans across many other real-world scenarios, including evolving co-authorship network,

co-actor network, and interaction network.

Our first significant contribution is the introduction of a novel, generic framework
for subjective interestingness for sequential data. For this, we build on previous work
by De Bie [2011b], who first introduced a formalization of subjective interestingness for
exploratory data mining, in which the analyst’s prior beliefs are modelled as constraints
and a background distribution—representing the current knowledge of the analyst—is
derived using the maximum entropy principle. The novelty of our framework for sequential
data is two-fold. First, the patterns that we define, called ‘actions’, represent atomic
changes to the data that provide information relative to the current knowledge of the

analyst. Second, we introduce a novel information gain measure that is motivated by
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the minimum description length (MDL) principle [Griinwald, 2007]. With this measure,
our approach can automatically discover compact summaries without having to decide
on the number of patterns. As such, we are the first to combine approaches for data
mining based on subjective interestingness (using the maximum entropy principle) with

pattern-based summarization (using the MDL principle).

Our second significant contribution is the instantiation of this generic framework for
dynamic graphs. As van Leeuwen et al. [2016] instantiated subjective interestingness for
dense subgraph discovery from (static) graphs, indeed we here build on their results. The
concrete actions that we define, include add, remove, update, shrink, split, and merge.
An instance of each of the action types is presented in Figures 4.1a-4.1f, for a toy example
depicting an evolving airline network. FEach of these actions adds, updates, and/or removes
one or more dense subgraphs to/in/from the current summary, represented by set Ci
for each state s. The set C; comprises of the analyst’s prior beliefs (represented by
B) and the dense subgraphs as patterns (represented by P;). In Figures 4.1a-4.1f, we
indicate the initial summary C! and final summary CI after performing the actions in
each state. By iteratively communicating these actions to the analyst, the analyst learns
about the relevant changes in the graph (as shown in Figure 4.1g) relative to what they
already know. The use of our information measure ensures that we always communicate
actions that provide more information about the data than that is required to describe
the patterns and corresponding actions, effectively making sure that the analyst always

gains information.

Our third and final significant contribution is DSSG, a heuristic algorithm for the on-
line summarization of dynamic graphs by means of iteratively discovering actions. Guided
by the information gain criterion, it always considers all possible types of actions but only

returns that action that provides the largest gain.
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Fig. 4.1. Toy example showcasing an evolving graph over six states (S1-S6), as summarized
by background information B and patterns P1-P5’. (a-f) In each state s the initial and final

summary are represented by Cg and CI| respectively; (g) Patterns P1-P5’ and corresponding

s

add / merge / shrink / split / update / remove actions can be used to summarize the six

consecutive states of the dynamic graph as depicted in a-f.

The remainder of the chapter is organized as follows. The relevant notation and
preliminaries are discussed in Section 4.2. Our framework for subjective interestingness
for sequential data and its online summarization is presented in Section 4.3.1 and Sec-
tion 4.3.2, respectively, leading to the introduction of the problem of online summarization
of dynamic graphs in Section 4.3.3. In this context, the DSSG algorithm is presented in
Section 4.4. The experimental results on publicly available real-world datasets are dis-
cussed in Section 4.5. Important features of the proposed framework, key observations,
limitations and future scope are discussed in Section 4.6, after which we conclude in

Section 4.7.
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4.2 Preliminaries

This section defines the notation adopted in this chapter, and briefly describes the obser-
vations from the two most closely related works on which we build in this chapter. These
are 1) the framework for FORmalizing Subjective Interestingness in Exploratory Data
mining (FORSIED) introduced by De Bie [2011b], and instantiated for different types of
data and patterns; and 2) the work on Subjective interestingness of SubGraph patterns

(SSG) in static graphs by van Leeuwen et al. [2016].

4.2.1 Data and Notation

A rectangular dataset is a matrix D € DM*V  where the dimension of the dataset is given
by M x N and D is the domain of an individual cell. A (simple) graph is denoted as
G = (V, E®), where V is a set of vertices and E“ is a set of edges such that u,v € V
for each edge (u,v) € E°. Its adjacency matrix is a rectangular dataset and hence,
represented by D € DIV*IVI where D = {0, 1}.

A dynamic dataset Dr (rectangular) changes with time, where 7T is the timespan of
the dataset. This time interval can be segmented into a number of consecutive intervals,
where each interval t = (#°,#/) C T represent a state s, such that t* is the begin time and ¢/
is the finish time. For any two consecutive states, s and s+1, time ¢/ is equal to time t%_ .
Thus, a sequence of snapshots Dy, ..., Dg is observed, indexed by state s € {1,...,S},
where S is the total number of states. Note that, in a sequence of snapshots, each Dy
is a static rectangular dataset, such that D, € DM*¥, We refer to such a sequence of
snapshots as sequential data.

A dynamic graph, denoted Gr = (V, Er), is a graph in which each edge is present for a
given period within time interval T, i.e., Er is the set of edges that occur in time interval
T. More specifically, each e = (u,v,t°,t/) € Er defines an edge u,v € V that appears
at start time * and continues to exist until it disappears at finish time ¢/. Again, the
time interval T' can be segmented into a number of intervals, as seen earlier for dynamic
datasets. This assumption implies that each ¢ C T defines a static state s of the dynamic
graph, that is essentially a (simple) graph: each edge either exists or not. We denote
the dynamic graph projected to its graph corresponding to a fixed time ¢ by G, and
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its corresponding adjacency matrix by D, € DIV*XIVl such that D = {0,1}. Hence, a
dynamic/evolving simple graph, G5 can be represented as a sequential dataset, Dy with
a sequence of static simple graph snapshots G7, ..., G2 and a corresponding sequence of
adjacency matrices Dy, ..., Ds.

Notably, even when time is not discrete, one can easily discretize it by segmenting
it into equal-length intervals (e.g., seconds, minutes, ...). As we will see, the length of
these intervals determines the granularity at which the approach will identify changes in
the data. For instance, in the airline case, it is very unlikely that (relevant) changes will
occur within seconds or even minutes, hence, it may be reasonable to segment time in

hours.

4.2.2 Subjectively Interesting Patterns in Static Graphs

Informally, the FORSIED framework [De Bie, 2011b] defines subjective interestingness of
a pattern as the information it provides with regard to the analyst’s expectations (or prior
knowledge), normalized by its complexity. Given a dataset D, the analyst’s background

distribution P*, is the distribution that maximizes entropy, is given by

P* = argmax — » _ P(D)log(P(D)), (4.1)
PMD)  pep
st. E [f;(D =Y P(D = ¢, Vi, (4.2)
DeD
> PD) =1 (4.3)
DeD

The set of constraints enforced in Equation 4.2 is presented in a generalized form,
where each constraint B; € B is a pair consisting of a function f; over D—as properties
of the data—and a corresponding constant ¢;, i.e., B; = (f;, ¢;). The set of constraints B
represents the analyst’s prior knowledge or expectations on the data. The exact type(s)
of constraints and their interpretation depends on the type and nature of the dataset D.

Next, the interestingness of a pattern # is defined as the ratio of the pattern’s self-
information (denoted SZ) to its description length (denoted DL). Self-information is the

negative log-probability that the pattern is present in the data,i.e., —log(P(f € D)),
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4. Subjective Summarization of Evolving Simple Graphs

while description length is the number of bits required to describe or communicate the

pattern to the analyst.

Instantiating these generic concepts for dense subgraph patterns in static simple

graphs, van Leeuwen et al. [2016] defined interestingness I of a static graph pattern,

0 = (W, kw), denoting a vertex set W having ky edges, as*?

1[0, k)] = SR )] (i)

DLW |W| - log (%q) + V] -log (1%11)

where ny, is the number of possible edges in subgraph W, ¢ is a hyperparameter rep-
resenting the ‘expected’ probability of a random node to be present in W, and py is
the probability of the subgraph occurring given background distribution P*. The latter
probability is computed as py = % Ewewpw, where p,, is the probability that an

edge between vertices v and v exists as given by P*.

Iterative learning. The framework above can be motivated by the observation that
compression equates learning [Griinwald, 2007]: in order to learn as much as possible
about the data, the implicit goal of the analyst is to (internally) represent the data
using as few bits as possible. This observation implies minimizing — log P*(D), i.e., the
length of the data encoded by the background distribution. This can be accomplished by
changing the analyst’s knowledge on D. Here, change in the analyst’s knowledge on D
implies that a new set of constraints C corresponding to each discovered pattern must
be constructed, which is used to update the background distribution P*. Specifically,
when a graph pattern is discovered, a constraint is added to ensure that the updated
expectations of the analyst conform with the actual number of edges. For instance, when
a graph pattern (W, ky) is presented to the analyst, a new constraint Cy = (fw, kw) is
added to C, where fy is a function over W vertices which counts the number of edges,
Le, fw(D) = >, vewues Plu,v], and ky is the actual number of edges in the vertex-
induced subgraph of W vertices. Notably, the solution to the following problem provides
the updated background distribution [van Leeuwen et al., 2016]:

42 A1l logarithms in this chapter are to the base 2.
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P = argmin ) P(D)log ( P(D) ) , (4.5)

P P+(D)
st. Y P(D)fw(D) > kw, (4.6)
> PD)=1. (4.7)

Hence, the analyst can learn everything about the data by iteratively discovering the

most interesting pattern and updating the background distribution after each iteration.
4.3 Proposed Approach

In this section, we introduce our novel framework for subjective interestingness for sequen-
tial data, which extends the FORSIED framework but also incorporates crucial changes.
We introduce the problem of subjective summarization of sequential data, and to solve
this problem we propose the method of online summarization of sequential data. Finally,

we instantiate this generic problem for dynamic graphs.
4.3.1 Subjective Interestingness for Sequential Data

Given a sequential dataset Dy, we consider the setting where an analyst is interested in
learning informative patterns about the data as the snapshots unfold in an online fashion.
As with static data, the analyst may have prior beliefs about the data already before the
first snapshot—these are represented by a set of constraints B.

When the snapshot corresponding to the first state is analyzed, we aim to find a
compact set of constraints, i.e., patterns, that—together with the prior beliefs—minimize
the negative log-probability of the data, given the implied background distribution. To
avoid finding either too many or too complex patterns, we draw inspiration from the
minimum description length principle [Griinwald, 2007] and use a two-part code to balance
the goodness of fit of the data with the complexity of the constraint set. More precisely,
we aim to find a new set of constraints C; with corresponding background distribution Py
that minimizes — log P;'(Dy) + L(C;), where L is a function that computes the encoded
length for any given set of constraints. It is of note that we require an additional set

of constraints C; other than the existing set of constraints B to achieve the optimal
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(feasible) solution of the above problem. The set of constraints C; is used to ensure that
the knowledge mined by the discovered patterns is reflected in the background distribution
Py

For any consecutive snapshot, we now want to adapt what the analyst has learned
before; by only providing the analyst with information about changes that have occurred
in the data since the previous state, he requires minimal effort, and we obtain a minimal
summary. Given the previous, this implies that—for each snapshot s after the first—we
need to find a set of constraints C,; with corresponding background distribution P; that
minimizes — log P(D;) + L(C;|Cs_1), where L is a function that computes the encoded
length for any given set of constraints given another set of constraints; i.e., smaller changes
require fewer bits.

With the given discussion, we formally introduce the following problem statement.

Problem 4.1 (Subjective Summarization of Sequential Data) Given a sequential

dataset Dy, i.e., sequence of snapshots Dy, ..., Dg, and prior beliefs B, find:

o for Dy: a set of constraints Cy that minimizes —log Py (Dy) + L(Cy), where P} is

computed using constraints BUC;

o forDg, withs € {2,...,S}: a set of constraints Cg that minimizes — log PX(Dj)

+L(C4|Cs_1), where P is computed using constraints BUC;.

S

4.3.2 Online Summarization of Sequential Data

Apart from the fact that optimally solving each iteration of Problem 4.1 would require
to consider a very large search space, i.e., that of all possible constraints sets, we do
not want to present unordered sets of constraints to the analyst: this would very likely
overwhelm the analyst and therefore cause confusion. Instead, we prefer to present atomic
changes to C to the analyst one by one, as is also done in the framework for static data.
We will therefore now derive an approach that heuristically approximates Problem 4.1
by iteratively looking for the largest changes and communicating those to the analyst

immediately.
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After each atomic change «, also called action, the set of constraints C is updated to a
new set C’, and hence the background distribution P* is updated accordingly. a reduces
the negative log-probability of the data by updating the background distribution, and we

define this reduction as Information Content, ZC.

Definition 4.1 (Information Content) Given an action «, and constraint sets
C (original) and C' (updated), we define the information content of «, denoted by ZC,
as the difference between the length of the data encoded by the background distributions
specified by constraint sets C and C':

1C(a) = ZC(C'|C) = —log P4(D) — (log P& (D)) ",
— log P&y(D) — log P&(D),

where P% is the MazEnt probability distribution given a set of constraints X (i.e., using

Equations 4.1-4.3).

An action on C can be categorized as one of the following:
1. Addition of a new constraint C, i.e., C' = CU{C},
2. Deletion of a constraint C', i.e., C' = C\ {C},

3. Update of an already present constraint C' € C, i.e., replacing C' with a constraint

(", and hence C' = C\ {C} U {C"}.

Definition 4.2 (Description Length) The description length of an action «, denoted
DL(w), is defined as the (minimum) number of bits required to encode the changes in the

set C when communicated to the analyst.

Remark 4.1 Given a set of constraints Cs_1, let A be an ordered set of actions performed

on Cs_1 to get an updated set Cg, then the encoded length L of Cg is computed as:

L(C,|Cs1) = Y _DL(a) (4.9)
acA
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We now have two different quantities associated with each atomic change «, i.e., ZC
and DL. Maximizing ZC and minimizing DL leads to our overall goal of minimizing
—log P¥(D;) + L(C;s|Cs-1). Thus, we discount ZC with DL and perform the action with
maximal difference at each step. We call this difference information gain and denote it

by ZG.

Definition 4.3 (Information Gain) Let o be an action that transforms a given set of
constraints C into an updated set C'. Then, the information gain ZG on performing o on
C is given by

ZG(a) =IC(a) — DL(w). (4.10)

The process of online summarization begins with the initialization of background dis-
tribution Pj using the prior belief(s) B that an analyst may have. At the start of state
1, no patterns have been discovered yet, i.e., C; = (), which implies P}, = Pj. Then
patterns with maximum ZG (Equation 4.10) are discovered iteratively and for each such
pattern a corresponding constraint C' is added to C; and hence the background distribu-
tion Pg ¢, is updated (using Equations 4.5-4.7). Note that C; is initially an empty set,
thus the only action that can be performed on C; is the addition of a new pattern. The
process continues until no feasible action can be performed on set C;. Here, a feasible
action is any action which satisfies a user-provided criteria, for example, to be in agree-
ment with the MDL principle an action « it is recommended default that « is feasible
if ZG(a) > 0. The process then moves to the following state. For any state s (except
state 1), Cy is initialized to the final C,_; and P¢, to the final Pg_ . This is followed by

iterative actions on C, with maximal, ZG until no feasible action can be performed.
4.3.3 Online Summarization of Evolving Simple Graphs

The concept of subjective summarization of sequential data can be directly adapted to
dynamic graphs by segmenting such a graph into a sequence of static graph snapshots (see
Section 4.2.1). By making the data type more specific, however, we can also instantiate the
other components of the generic framework—e.g., actions, prior beliefs, constraints, and
description length—with more precise definitions. As discussed earlier, a graph pattern,

0 = (W, kw) is a subgraph of W C V vertices that is connected by ky edges. Thus, by
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definition a graph pattern is connected, i.e., there exists a path from every vertex to every
other vertex. Note that, since we consider graph patterns, the definition of constraints
follows the discussion in Section 4.2.2. Following, we introduce the following problem

statement as an instance of Problem 1.

Problem 4.2 (Subjective Summarization of Evolving Simple Graphs) Given an
evolving simple graph G7 consisting of a sequence of snapshots G, ..., Gs, with D the
corresponding adjacency matrix for a state s and prior beliefs B, solve Problem 4.1 such

that each pattern in every set C; is a connected subgraph pattern.

As discussed previously, optimally solving Problem 4.2 requires to consider a very large
number of possible constraint sets. Similarly, we heuristically address Problem 4.2 by
iteratively communicating atomic changes, or actions, having maximal ZG to the analyst.
Based on the properties of a graph pattern and possible structural changes, we now
formalize six specific types of actions which we use to communicate changes on graph
data, as initially depicted in Figure 3.1.

The add action communicates a newly discovered subjectively dense subgraph pattern.
In Figure 4.1a, two patterns, P1 and P2, are identified and added in state S1. A remove
action deletes a pattern that no longer holds in the current state, i.e., when the pattern
is no longer connected and/or its density decreases substantially. An example is shown
in Figure 4.1f, where a sparse pattern P5’ is removed in state S6—removing a constraint
is informative when it has a positive ZC.

The other actions are update, merge, shrink, and split, which all represent modifi-
cations of constraint(s) already present in C. When the density of a pattern corresponding
to an existing constraint increases, this is communicated via update. Thus, a constraint
C = (fw,kw) € C is replaced by a similar but updated constraint C' = (fw, k).
In Figure 4.1e, pattern P5 is updated to pattern P5’ in state S5, when its density
increases compared its density in state S4 (Figure 4.1d). By applying a merge ac-
tion, two previous patterns are merged to form one new pattern. That is, two con-
straints C; = (fw,, kw,), C; = (fw,, kw,;) € C are replaced by a single new constraint

"= ( Jw.ow; kWiij), such that the resulting pattern of vertices W; U W; is connected.
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Table 4.1. Conditions that must be met to perform an action « on a constraint C' present in
constraint set C, with initial pattern 6;, resultant pattern 6 and density function p (defined as

the ratio of the number of edges to the maximum possible number of edges in a graph).

Type R p(0;) p(0;) is 6; is 0
of o increases? decreases? connected? connected?
Add X — — — v
Remove v X v X —
Update v v X v v
Shrink v X v ? v
Split v X v X v
Merge 4 ? X 4 4
v: true, X: false, 7: may or may not be true, —: not applicable

An instance is presented in Figure 4.1b, where two patterns, P1 and P2, are merged to
create a new pattern P3 in S2.

Actions shrink and split either reduce an existing constraint or decompose one into
multiple constraints. A constraint is shrunk when the density of a pattern decreases with
the evolution of the graph (see Figure 4.1c, where pattern P3 shrinks to form pattern
P3 in state S3). Similarly, a constraint can be decomposed into multiple new constraints
if the pattern corresponding to an original constraint consists of two or more connected
components (see Figure 4.1d, where pattern P3’ splits into two new patterns P4 and P5
in state S4). In shrink, the original constraint C' = (fy, kw) € C is replaced by a new
reduced constraint C' = (fy-, ky) such that W’ C W. In split, on the other hand, a
constraint C' = (fy, kw) € C is replaced by T new constraints, C; = (fw,, kw,),...,Cr =
(fw., kw,), such that Wiy,..., W, C W and W;NW; =0,Vi,j € {1,...,7}.

The different conditions that must be satisfied for each of the six types of actions to
be applicable are summarized in Table 4.1.

Next, the formulation of information content ZC and description length DL of each
action type is summarized in Table 4.2. We extend the abstract definition of description
length given in the previous section (Definition 4.2). The description length of an action is

the summation of two parts, the first of which encodes the type of action, represented by
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Table 4.2. Shown are the formulation of Information Content (ZC) and Description Length

(DL) for each defined atomic change, a.

o ic DL
Add log P&\, (D) — log P&(D) To+Trw +Tw
Remove log P&\ (D) — log P&(D) Ta+Tc
Update log P&y cuer (D) — log P&(D) Ta+Tc+Tky,
Shrink log P&\ cucr (D) — log P& (D) Ta+Te+Thy +Tr+Trw
Merge  log P&y (e, o qucr (D) — log P&(D) Ta+2xTco+Thy,
split  log P& cuqey,.. . C,}<D) — log P&(D) Tat+tTe+Tr+Tyw, +Tw, +Tky.

To=log(l), Tc=Ilog(|C|), Try =Ln(nw —kw +1), Ti,, =Lnnw —kw +1),
Tr=Ln([¥]),  Trw=log(IW]) +log(|W[—1) - +log(|W| — [¥] +1),

where ¥ is the set of vertices removed, Tw = |W/|log(q) + (|V| — |[W]|)log (1 — q),

T-=La(r), Tiw, =2ic [ In(Wo)l, Tw, =log(IW|) +1log(IW] 1) +--- +log(|[W| -2 +1)
—where x = [U_; Wil, Ty, =>4 Ln(nw, — kw, +1)

type(a), and the second of which encodes the details, represented by details(«). For all
quantities where the upper limit is not known, we use the universal integer code [Rissanen,
1983], which is given by Ln(n) = log(2.865064) + log(n) + loglog(n)... and sums over
all positive terms. If the upper limit is known then we use the uniform code [Griinwald,

2007], given by log(n). Note that all logarithms are to base two.

In the description length of «, to describe the type of action we use the uniform code
over all possible action types as there is no priority or bias towards any action. Thus,
DL(type(a)) = To = log(l), as we require —log § bits. Here, I = 6 as we have defined
six action types above. The computation of DL(details(a)) for each action type is shown
in Table 4.2. That is, details(add) is the summation of the number of bits required to
describe the set of vertices (Tw = DL[W], see Equation 4.4), and the number of edges
in the corresponding vertex-induced subgraph. Instead of describing the number of edges
in a subgraph, we describe the number of edges short in a subgraph when compared to
a clique of same number of vertices. That is, for a subgraph having W vertices, ny is

the maximum number of edges possible between W vertices, and ky is the number of
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edges, then we describe the difference between ny, and ky, given by T, . Thus, a dense
subgraph with high number of edges would have smaller description length, which favours
discovery of dense subgraph patterns. Note that, the hyperparameter ‘¢’ in 7y can be
used to influence the size of pattern (see Section 4.2.2).

In remove, update, shrink, and split, the index of the constraint to be removed is
communicated in 7 ¢ bits. Similarly, in case of merge the index of two constraints are
communicated in 2 X T¢ bits. Since we only consider the merge of two constraints at
a time, the term Ly(|2|) is omitted. In addition, for all the actions except remove the
information about the edges is communicated in Tkw/ bits. In case of shrink, terms 7,
and T ., indicate the number of bits required to describes the number of vertices removed
from the original pattern and the removed vertices, respectively. In split, the number
of resulting constraints is described in 7, bits, number of vertices in each constraint in
T w,| bits, vertices in each constraint in 7y, bits, and information about edges in each

component using 7, bits.

Lemma 4.1 For an action o, which updates a set of constraints C to C', IC(«) as

defined in Definition 4.1 is equal to
IC(«) = log P& (R) — log P&(R), (4.11)

where R is a submatriz of D given by R = D[Wy, ... Wy Wi, ..., Wy, such that W is
the set of M wvertices covered by the affected constraint(s)*3, Cs,.

Proof 4.1 The proof is straightforward, however, for completeness we provide the follow-
ing details. In Equation 4.8, log P%(D) = 3, ..y, log P%(Dy;) is the sum over all pairs of
vertices. These pairs can be categorized into three groups, which are 1) both vertices lie in
W, 2) neither of the vertices lie in W, and 3) either (but not both) of the vertices lie in
W. It is only in the first case that the probability is updated on performing the action «,
while the rest of the probability terms remains unchanged and hence, these terms cancel

out each other, i.e., log P& (D;;) = log P&(Dy;). Thus, the result follows.

43The affected constraints C,, are those constraints (both original and updated) that are affected by
action a. That is, if « transforms C to C’ the C,, is defined to be all constraints in either C or C’ that

are not in both C and C’
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By virtue of Lemma 4.1, we come up with the following result.

Theorem 4.1 The complezity of computing information content ZC of an action « is

O(|W?), where W is the set of vertices included in C,.

Proof 4.2 The proof follows Equation 4.11 which is sum over all pair of vertices, (i,7) :
i,j € W. Hence, this requires a complexity of O(|W|?).

As discussed above, we solve Problem 4.2 by iteratively performing that action (of
one of the six types defined above) with maximal ZG. Thus, we introduce the problem of
online summarization of dynamic graphs (Problem 4.3). Hence, we heuristically unfold

Problem 4.2 by iteratively solving Problem 4.3 at each step.

Problem 4.3 (Online Summarization of Dynamic Graphs) Given the cur-
rent state s, simple graph snapshot G, corresponding adjacency matrix Dy, and current
constraint set C,, perform that action ‘a’ from the set of all possible actions having
mazximal information gain G, such that the pattern(s) obtained after performing ‘o’ are

connected subgraph(s).

4.3.4 Additional Details

Prior Beliefs. We consider two different types of prior beliefs to constitute the set B,
which are direct adaptations of the beliefs proposed by van Leeuwen et al. [2016], as

follows:

1. Belief-c: In this case, we model the analyst’s knowledge about the total number of
edges in the initial snapshot of the data. In other words, the analyst has prior knowl-
edge about the relative edge density of the graph dataset. Solving Equations 4.1-4.3,
De Bie [2011b] showed that P* turns out to be product of independent Bernoulli

distributions for each random variable a,, and is given by

; exp((2-A) - Gup)
PD)=]] (3 (4.12)

u<v

This distribution is best represented as a matrix P* € [0, 1]V*IVl with row and

exp(2-\)

Trempas] = p(Gy) suggests

column indices indicating the vertices, such that p,, =

the probability of a,, = 1, i.e., an edge between vertex u and v.
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2. Belief-i: Similarly, here, the user possesses a belief about the individual degree of
each vertex in a snapshot of the data. The maximum entropy distribution turns out

to be a similar product of independent Bernoulli distributions, given as

. . exp((Au + Ay) - au,v)
P(D) = H L+ expAy + Ay) (4.13)

u<v

exp(utAv)

TreapOu o) is the probability of random variable a,,, = 1.

where p, , =

Updating the background distribution. When a pattern 6 = (W, ky) is discovered
(through action add), a constraint C' = ( fu, kw ) is added to the set C, and P* is updated
using Equations 4.5-4.7 [van Leeuwen et al., 2016], where the updated P* is given as

P*D) = [[v.."" (1 -, L) (4.14)

where

exp(Au+Av+Aw) .
1+exp(Au+ro+Aw) qu’ GRS VV’

p;,v et (}\ . ) (415>
exp(Autv ‘
TheapOutre) otherwise .

Thus, for all pairs (u,v) : u,v € W a unique Lagrangian multiplier, Ay is introduced

(using the bisection method) upon updating the background distribution. Similarly, if

ezp()\qu/\quZcec:u,ueW Aw)
1+6$p()\u+)\v+ZCEC:u,U€W )\W) '

multiple constraints are present in C, then p, , is computed as
Hence, it is efficient to store only the Lagrangian multipliers and compute the probability
whenever required.

If a remove action is performed then the corresponding Lagrangian multiplier is re-
moved from the list to update the background distribution. Similarly, for all other actions,
first the corresponding Lagrangian multiplier(s) to the original constraint(s) are removed
and then using Equations 4.5-4.7, new Lagrangian multiplier(s) are computed. Hence,
this is an efficient way to update the background distribution.

Feasibility Constraint. In order to provide the user with a concise summary we in-
troduce a feasibility constraints to limit the number of actions performed in each state.

That is, we consider an action feasible if the information gain is positive, i.e., ZG(a)) > 0.
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Algorithm 4.4 DSSG
1: procedure DSSG(Gr, C, B)

2: Compute Maximum Entropy Distribution for Gy given B as P

3: for each G, € Gr do > here G is a sequence of static graphs (snapshots)
4: repeat

5: A < EVALUATEADD(G, P)

6: R < EVALUATEREMOVE(GS, P, C)

7: U <~ EVALUATEUPDATE(GS, P, C)

8: S <~ EVALUATESHRINK (G, P, C)

9: M < EVALUATEMERCE(Gj, P, C)
10: T < EVALUATESPLIT(GS, P, C)
11: B + GETBESTACTION(A,R,U,S,M, T) > Returns action with max. ZG
12: if B # () then
13: Update C and P using B and Communicate B to the analyst
14: until B # () > Move to next snapshot if nothing is to be learned

Although, it may be altered as per user preference, this choice is motivated by MDL prin-
ciple and ensures that an action always provide more information about the data than

that it costs to describe the action.

4.4 The DSSG Algorithm

In this section, we introduce an algorithm called DSSG, of which the step by step proce-
dure is outlined in Algorithm 4.4. DSSG is a heuristic approach to solve Problem 4.2 that
works in an iterative manner, solving Problem 4.3 in each step. The overall procedure of

DSSG can be summarized as follows.

DSSG starts with an initial graph snapshot Gy, an initial set of constraints B (as the
analyst’s prior belief), and a set of constraint C (which is usually ) initially). Given
this, the maximum entropy distribution P is then computed (Line 2). For each state s
(Line 3) actions are performed iteratively to solve Problem 4.3 (Lines 5-10). The process
continues until no action can be performed (Line 14). Each performed action consists of

an update of the background knowledge (updating P and C) followed by communication
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of the performed action B, to the analyst (Line 12). An example can be seen in Figure 3.1,
where in each state the initial and final (represented by superscript I and F respectively)

set of constraints is represented by C (indexed by subscript s € [1,T7).

The feasibility constraint comes into effect while searching for the best action to be
performed in each step (Line 11). The overall best action with the maximal value of ZG
is selected and returned. If the best action violates the feasibility constraint, then null is

returned and the process continues with the next graph snapshot.

Algorithm 4.5 Find the most interesting pattern for addition

1: procedure SEARCHPATTERN(G;, P, H*, I*)

2. H<+ H* I+« i

3: for u € Neighbors(H,G:) \ W do > try if adding a vertex increases I
4: W'« W U{u}, I' + IG(add)
5: if I'>Tthen W<« W' [+ I'  H<+ (W k)

6: if I > I* then

7 return SEARCHPATTERN(G,, P, H, I)

8: else

0: for u € W do > try if removing a vertex increase [
10: W'« W\ {u}, I + ZG(add)

11: if I'>Tthen W« W/ I+ I'  H+ (W ky)

12: if I > I* then

13: return SEARCHPATTERN(G,, P, H, I)

14: else

15: return (H*, I*) > If nothing increases I* return the found graph pattern

The EVALUATEADD procedure is used to discover the best new subgraph pattern
with maximum ZG, which is a complex problem. This can be realized by the fact that the
discovery of new pattern requires the evaluation of all possible 2/V| candidate subgraphs.
Hence, we use a hill climber based search algorithm (SEARCHPATTERN, see Algorithm 4.5)
based on the SSG algorithm [van Leeuwen et al., 2016], which is proposed for finding a

subjective interesting subgraph in a static simple graph. This algorithm starts with a
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seed pattern H* and recursively adds (Line 3-6) or removes (Line 10-13) vertices to find
a pattern with a maximal value of ZG. This search stops if neither a vertex can be added
nor removed (Line 17). To ensure the connectedness constraint, while adding vertices
only vertices neighboring to vertices present in the pattern are checked (Line 3). As this
hill climber is likely to suffer from convergence to local optima, we independently run
the Algorithm 4.5 for a list of seed patterns [van Leeuwen et al., 2016] and select the
single best pattern as search result. Further, note that the computational cost of naively
computing ZG(add) at each step of the hill climber would be prohibitive, as it would
require to compute a new Lagrangian multiplier to update the background distribution at
each step. As this is the same problem as van Leeuwen et al. [2016] faced, we also adapt
the same solution. That is, information content ZC of a pattern § = (W, ky), as defined

in Equation 4.8, is approximated by

ZC(add) ~ SZ(0) = ny - KL (:—I;VVHPW) : (4.16)

We empirically show that Equation 4.16 is an adequate approximation of Equation 4.8
in Figure 4.2. To obtain Figure 4.2, we created a random graph of 20 vertices using the
Barabasi-Albert model and computed the values of SZ (Equation 4.16) and ZC (Equa-
tion 4.8) of all possible connected subgraphs, considering the two types of prior belief as
discussed in Section 4.3.4. It is observed that for all candidate subgraphs (and for both
types of prior belief) the value of SZ is always less than or equal to ZC. Although they
are not exactly equal, the correlation r = 0.9999 (in Figure 4.2a) and r = 0.9948 (in
Figure 4.2b) are high enough to suggest that SZ can be successfully used as proxy for ZC,
as is also argued by van Leeuwen et al. [2016]. Moreover, computing SZ is clearly much
faster than computing ZC, as it does not require updating the background distribution at
each step. Hence, this allows to discover surprisingly densely connected graph patterns
from snapshots of the graph in an efficient way.

EVALUATEREMOVE and EVALUATEUPDATE are used to evaluate each constraint in C
to, either remove or update a constraint, respectively. In these procedures, each constraint
in C is independently evaluated by computing the corresponding ZG. To compute ZC (as

in Table 4.2), we update the background distribution assuming that the action would take
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Fig. 4.2. Plots of ZC vs ST of all connected subgraphs of a Barabasi-Albert random graph of

20 vertices

place. Of note, the update in the background distribution is rolled back after evaluation
of each constraint. Both of these method return the respective constraint with maximal
14.

Similarly, EVALUATEMERGE returns two constraints (in C) or patterns which, when
merged, result in a connected graph pattern with maximal ZG.

EVALUATESHRINK is used to evaluate each constraint in C for shrink and the reduced
constraint with maximal ZG is returned. To shrink a pattern or constraint, we use the
procedure SHRINKPATTERN (Algorithm 4.6), which recursively removes vertices (Line
2-7) until no increase in ZG is observed (Line 9).

EVALUATESPLIT is used find the constraint which produces maximal ZG upon split.
Note that, a new pattern that is the result of split may shrink in a next iteration;
hence we also evaluate a possible reduction of each resulting pattern upon split using
procedure SHRINKPATTERN. Thus, EVALUATESPLIT contains two parts: 1) first the
different connected components in the original pattern are identified (each component
acts as a new pattern or constraint), and 2) then each new pattern is evaluated for
shrink.

Complexity. In a single iteration of DSSG, six different procedures are executed

sequentially; hence, we discuss the complexity of each procedure. The EVALUATEADD
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Algorithm 4.6 Find a candidate shrink pattern
1: procedure SHRINKPATTERN(H™*, P, I*)

2: for u € W do
3: W'« W\ A{u}, I' < IG(a)
4: if I'>Tthen W+ W' I+ I'  H+ (W ky)

5: if I > I* then

6: return SHRINKPATTERN(H, P, I)
T else
8: return (H* I*)

procedure runs the hill climber SEARCHPATTERN independently, k times for k different
seeds. In each iteration of this hill climber, the computation of ZG is the most compu-
tationally expensive part, with time complexity of O(|W|?) (from Theorem 4.1), where
W is the set of vertices in a pattern. This hill climber is a direct adaptation of SSG
and van Leeuwen et al. [2016] showed that this complexity can be reduced to O(|W|).
Hence, if the number of neighbors in Algorithm 4.5 is (let’s say) A, then each iteration
takes O(N|W|). Thus, the worst-case complexity of running SEARCHPATTERN becomes
O(ZN|W ), assuming that the hill climber runs for at most Z iterations.

In the other procedures, to evaluate each constraint in C requires the computation
of ZG, which takes O(|[W|?) (from Theorem 4.1). Note that computing the Lagrangian
multiplier corresponding to a revised constraint in C requires to run the bisection method,
which has a complexity of O(n|W|?). In this, n is the number of iterations required,
computed as log <, where € is the given error or tolerance and ¢ is the initial bracket

size. Thus, the other procedures have a complexity of O(n|W|?).

Given that the complexity of the overall algorithm strongly depends on the actual
number of iterations, which cannot be computed in advance, we will instead mention

empirical runtimes in the experiment section.

4.5 Experiments

In this section, we will demonstrate the efficacy of the proposed framework and the pro-

posed algorithm, DSSG, by means of quantitative (Section 4.5.3) and qualitative (Sec-
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tion 4.5.5) results on seven publicly available real-world datasets (Section 4.5.1).

4.5.1 Datasets

In this section, we will use the following seven publicly available datasets, also summarized

in Table 4.3.

Table 4.3. Datasets along with some of their properties. Type indicates if the dataset is a
Directed (D) or Undirected (U) graph, |V is the total number of nodes in the graph, |Eg| is the
total number of unique edges without timestamp, |E7| is the total number of unique edges with
timestamp, T is the total time period for which the edges in the graph are considered, t is the
time period covered by each individual state, and [S]| is the total number of states considered

for each dataset.

Dataset Type V| |Es| |E7| T t N
HicH-ScHOOL U 327 5818 20448 5 days 1 hour 41
WORKPLACE U 217 4274 11730 10 days 1 hour 91
MATHOVERFLOW U 24818 187978 231465 6.5 years 1 quarter 26
REUTERS U 7403 105343 159977 66 days 1 day 66
THEMOVIEDB U 8292 236691 249324 10 years 1 year 10
DBLP U 27400 83509 98330 10 years 1 year 10
WEBCLICKS D 80306 90435 231055 22 days 1 day 22

HicH-ScHOOL INTERACTION*?: This dataset has a total timespan of 5 days. In all
9 hours of interaction is available per day, except for the first day with 5 hours, and the
total timespan is segmented into 41 different states of 1 hour each.

WORKPLACE INTERACTION**: This is an interaction network of employees at a work-
place. It has a total timespan of 10 working days, where interactions for 9 hours are
available for each day, except for the first day where 10 hours of interactions are avail-
able. It is segmented into 91 different states of 1 hour each. Although the interactions
are instantaneous in nature, an edge exists for each interaction which occurred in a state

(snapshot).

44source: http://www.sociopatterns.org/
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MATHOVERFLOW*®: This network captures the communication between users on the
MathOverFlow website. A timestamped undirected edge exists between two users if one
user answers another user’s question, comments on another user’s question, or comments
on another user’s answer to any question. The dataset has a total duration of 2 560 days.
Here we consider a total timeperiod of 6.5 years, segmented into 26 states of 1 quarter
(3 months) each. The lifespan of any edge is considered to be three months, i.e., an edge
disappears 3 months after the time it appeared in the network.

REUTERS TERROR NETWORK?Y: This dataset contains words that are present in
each news article following the 9/11 terror attack. We build a network of words (as
vertices) with a link between them (undirected edge) wherever they appear in the same
article. The total time period considered is 66 days, with segments (snapshots) of 1 day
each. In each state, the snapshot of the network contains all the words (and edges between
them) if they appeared in any news article published on that day.

THEMOVIEDB: A network of actors (vertices) is considered, with an edge correspond-
ing to a co-acted movie. The data is fetched using the TheMovieDB API*7. The time
period of the network is from year 2009 to 2016, and is segmented into 8 states of 1 year
each. All movies in the 8 year time period having actors with popularity score more than
2 are included. Each snapshot contains edges corresponding to movies released in the
same year.

DBLP: This is a co-author network, created using the DBLP*® data of all publications

9 over a period of 10 years. The

in top-20 Machine Learning and Data Mining conferences®
dataset is segmented into 10 states of 1 year each, adding an edge between two authors if
they have co-authored at least one publication in the given year.

WEBCLICKS: A network of click requests (directed edges) is created from referrer
host to target host (nodes) for the time period between 1 November 2009 to 22 November

2009. To prune the data®!?, we only consider edges with more than 25 requests in a day.

45source: https://snap.stanford.edu/data/sx-mathoverflow.html

46source: http://vlado.fmf.uni-1j.si/pub/networks/data/CRA /terror.htm

4Tsource: https://www.themoviedb.org/documentation/api
48source: https://dblp.uni-trier.de/
4950urce: https://scholar.google.co.in/citations?view_op=top_venues&hl=en&vq=eng

41050urce: http://carl.cs.indiana.edu/data/websci2014 /web-clicks-nov-2009.tgz

7



4. Subjective Summarization of Evolving Simple Graphs

Also, the network is segmented into 22 states of 1 day each. That is, the edge remains

only for 1 day, given that at least 25 requests were made from referrer host to target host.
4.5.2 Experimental Setup

The prior belief for each of the datasets, except for the THEMOVIEDB dataset, used in
this chapter is type belief-c. For THEMOVIEDB type belief-i is used.
Since, we use an adaptation of the hill climber given by van Leeuwen et al. [2016], we

fix the following parameters as suggested by van Leeuwen et al. [2016].

1. The parameter ‘¢’ used in computation of the description length of pattern (see

Table 4.2) is fixed at 0.01.
2. We use the ‘interestingness’ based ‘“TopK’ seeding strategy with £ = 10.

The experiments are executed on an Apple Macbook Pro 2018, with 2.3 GHz Quad-
Core Intel Core i5 processor and 8GBs of RAM.

4.5.3 Quantitative Analysis

In this subsection, we demonstrate the performance of the proposed method on the above
mentioned datasets. We evaluate the results in terms of 1) the type of actions performed
in each state, 2) the number of patterns (or constraints) required to summarize each state,
3) the densities of the patterns found in each state, 4) the ratio of the vertices covered
by the patterns in the dataset in each state, and 5) the compression ratio between the
encoding cost of the data given the initial background distribution and given the final
background distribution in each state. We also showcase the feasibility of the proposed
approach by presenting the time taken for online summarization of all states in each graph
dataset. Table 4.4 presents the results and summarizes the set of found patterns for each
dataset by the proposed method.

Number of patterns required to summarize each state. We observe the lowest
median number of patterns, i.e., 5 for WORKPLACE and most, i.e., 62, for DBLP. This is
expected as WORKPLACE has the smallest number of vertices and DBLP has the second
most number of vertices among all considered datasets. However, WEBCLICKS has the

largest number of vertices but surprisingly very few patterns are found to summarize each
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Table 4.4. Properties of the found set of patterns (or constraints) Cs in each state s.

DataSet ICs] A Qc Q p CR  Coverage ‘ Runtime
min 6 6 60 326 0.4104 047%  10.70%
HIGH-SCHOOL  median 14 12 250 819  0.6247 8.01%  28.13% 307
mazx 22 16 755 1247 0.7600 25.01%  58.41%
min 1 1 ) 35 0.5176  0.36% 2.16%
WORKPLACE median 5 5 50 193 0.7000 1.23% 3.23% 96

max 11 11 626 997  1.0000 36.44% 28.57%
min 1 1 4151 8223 0.0070 0.63% 2.59%

MATHOVERFLOW  median 10 7 6147 16703 0.0179 4.38%  10.22% 74849
max 23 17 14138 24292 0.1226 46.20%  12.56%
min 5 1 177 322 0.0353 0.16% 2.20%

REUTERS median 18 11 796 3827 02630 5.44% 4.71% 79049
max 32 27 6550 13494 0.6693 19.50%  16.52%
min 2 9 3725 22145 0.0062 12.79% = 6.07%

THEMOVIEDB median 27 45 6379 42586 0.3125 21.82%  10.93% 18908
mazx 118 118 15556 74499 0.9968 48.30%  17.62%
min 2 1 345 7959 0.6208 1.03% 2.19%

WEBCLICKS median 6 2 539 11759 0.6814 2.41% 3.58% 14576
max 7 3 3384 12751 0.7104 18.50%  4.24%
min 10 10 462 4125 0.6207  7.49% 0.49%

DBLP median 62 68 3599 16705 0.6814 9.28% 2.53% 72 548
max 142 160 6604 29704 0.7104 11.51%  5.13%

Minimum, median, and maximum value of each property is shown among all states in each dataset, where

the number of constraints in each state is shown by |Cgl; total number of performed actions in each state

by |Al; difference in two sets of constraints (Cs_; and C;) in terms of the number of edges added and

removed covered by patterns in either set by (2q; overall changes in the dataset between two consecutive

states (s — 1 and s) in terms of number of edges added and removed by €; average of the average density

of all the patterns in C; by p; compression ratio by CR; and coverage, i.e., the fraction of vertices of the

dataset covered by all patterns combined. Runtime (in seconds) is the time required to process all states

of the dataset, i.e., to obtain a complete solution of Problem 4.2.
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Fig. 4.3. The fraction of each type of action used to summarize each dataset.

state ranging between 2 — 7. This is because WEBCLICKS is sparsely dense with the
number of unique edges |E;| almost equal to number of vertices |V| (see Table 4.3). For
THEMOVIEDB, a high number of patterns are observed in the summary of each state as

THEMOVIEDB is relatively dense dataset.

We also observe that the patterns found covers a high number of vertices despite of
performing only limited actions. The largest coverage of 58.41% is observed for HIGH-
ScHOOL and smallest of 0.49% in DBLP. In case of WEBCLICKS, reasonable coverage
in the range of 2.19% — 4.24% is observed. Hence, we conclude that depending upon the
size and density of a dataset, our method adequately identifies the number of patterns

required summarize each state of a dynamic graph.

Number and type of actions performed. We observe that the number of actions
(JA|) performed in each state is consistent with number of changes taking place in the
network upon evolution from one state to another (i.e., total number of new edges added
and old edges removed, shown by €g). That is, when Qg is smaller, a smaller value of |.A|
is observed, and vice versa. For example, in REUTERS only 1 action is performed when
changes in the network are small, i.e., a total of 322 edges are either added or removed,
and 27 actions are performed when the changes are much larger, i.e., 13494 edges either
appeared or disappeared from the network. The fraction of each type of action performed
can be seen in Figure 4.3. It is found that add and remove are the two most frequently
performed actions, whereas the other types of actions depend on the nature of evolution

of the network. It is seen that update is performed only for the HIGH-SCHOOL network.
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For WEBCLICKS, no merge or split actions are observed. Hence, the type of actions
carried out are dependent on the topology of the network and the nature of evolution, to

which our proposed algorithm effectively adapts itself.

Quality of patterns. We assess the identified patterns through average density*!!

p and compression ratios CR*!2. Minimizing the encoding cost of the data is only one
part of our objective, and we use it to signify the information contained in the patterns:
the higher the compression ratio, the more information about the data is provided by
the patterns. The maximum compression ratio is observed for THEMOVIEDB, which is
48.30%, and the minimum of 0.16% is obtained for REUTERS. This is accompanied by
the observed high values for the average of the average densities of all identified patterns,
including the minima of 0.0062 and 0.0070 in case of THEMOVIEDB and MATHOVER-
FLow respectively, which are also higher than the average densities of snapshots of the

data. Thus, our method finds subjectively dense and informative patterns.

We also observe for THEMOVIEDB where a more sophisticated belief, i.e., belief-i is
used. That is, the background distribution closely represents a snapshot of the dataset,
and with the change of state, any action would results in high compression ratios, which

is also observed in Table 4.4.

Quality of actions performed. We next investigate the sequential approach taken
in Problem 3. From the nature of the problem, it is expected that with each performed
action, the codelength of the data should decrease and the average of average densities
of identified set of patterns should increase. This is confirmed by Figure 4.4, where the
codelength is found to be always decreasing and the density is mostly increasing for the
DBLP and THEMOVIEDB networks. We also observe in Table 4.4, that there is a corre-
lation between changes captured by the actions (i.e, Q¢) and changes in the overall state
(i.e., Qg) compared to the previous state. For THEMOVIEDB, we observed a relatively
larger value of Q¢, i.e., 15556, when (g is also large, i.e., 74499; for WORKPLACE we

observed smaller value of )¢, i.e., 5, when (g is smaller, i.e., 35. Therefore, the actions

4 For a graph G = (V,E), p = |V‘*b%(directed) or = % (undirected)
412CR is 1 minus the ratio of the encoding cost (number of bits, computed as —log, P(D)) of the data

given the initial background distribution and given the final background distribution.
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Fig. 4.4. Codelength (blue solid line) vs average of the average densities of patterns in set Cg
(orange dashed dotted line) vs state s. The vertical dashed lines indicates the change of state
and the horizontal axis represent from left to right all iterations, where a series of actions is

performed for each consecutive state.

capture the changes in the graph state appropriately.

Runtime Analysis. Last, we discuss the (computation) time taken to run the exper-
iment for each dataset. This is comprised of various factors, including the time required
to compute the background distribution, executing the hill climber with different number
of seeds to discover patterns, creating a candidate list for each type of atomic change
to be performed, and updating the background distribution. In Table 4.4, the factors
visibly affecting runtime are the size and density of a dataset, and the number of seg-
ments considered in a dataset. Overall, the maximum runtime of 79 049 seconds, which is
approximately 22 hours for REUTERS, appears practical. However, this could be further
reduced upon optimization and parallelization of the proposed algorithm. Also note that

all experiments have been run on a standard laptop.

4.5.4 Comparison with other methods

In this subsection, we compare the summaries generated by DSSG, TimeCrunch (TC)
[Shah et al., 2015] and Scalable Dynamic Graph summarization Method (SDGM) [Tsa-
louchidou et al., 2020]. Note that, even though each of these methods summarizes a
dynamic graph, they each solve a different problem when compared to DSSG. These
methods summarize a dynamic graph but solve a different problem, unlike DSSG which

summarizes a dynamic graph by discovering state-to-state relative changes by means of
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evolving patterns and updating the analyst’s knowledge after presentation of each graph
snapshot. Since the other methods are different from DSSG, hence we present two baseline
methods using TC and SDGM, aligned with DSSG to provide a fair comparison.
Baseline Methods. For TC, at each state s we compute two summaries using TC,
which are, 1) for graph sequence Gy, ..., G4_1, and 2) for graph sequence Gy, ..., Gs_1, Gs.
The difference in the above two summaries is considered as the knowledge discovered in
a state s. At each state s, the difference in the two summaries is communicated to
the analyst using only two action types similar to the setting of DSSG, namely, add (to
communicate the patterns that appeared in state s) and remove (to communicate the
patterns which are present in state s — 1 but not in state s). To encode an action we use
the same strategy proposed for DSSG (see Table 4.2) such that the number of actions here
is 2. Notably, SDGM also provides online summary, i.e., the summary is presented after
each state. Thus, we use the same two action types and encoding strategy for SDGM to
communicate the changes in the summary provided at each state when compared to the
previous state. However, neither of the two methods, unlike DSSG, consider any type of
analyst’s prior knowledge. Thus, we assume that the goal of the other two methods is also
to update the analyst’s knowledge considering the same initial background distribution for
each dataset as considered in case of DSSG. The background distribution is updated, after
each performed action for each method, using the same principle as proposed for DSSG
(Equations 4.5-4.7, 4.14). To prune the number of patterns/constraints to summarize the
changes, DSSG performs actions with positive ZG only. This is not applicable in TC,
hence for a fair comparison we perform only a certain number of actions*'?, such that
the resulting number of patterns is equal to the number of patterns provided by DSSG in
each state for each dataset. In SDGM*!*, we choose the maximum number of resultant
patterns among all states by DSSG as the number of supernodes in each dataset, as it

identifies preset number of supernodes while producing a summary in each state.

413 As recommended in Shah et al. [2015], we fix the Jaccard similarity threshold as 0.5.
414 Tsalouchidou et al. [2020] suggests choosing a high number of microclusters compared to number

of supernodes, therefore, the number of microclusters is chosen as 10 times the required number of
supernodes/clusters. The required window size is selected as 2 to take into consideration only the previous

state while summarizing each state.
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Fig. 4.5. Plots showing the distribution of different measures over six datasets for each of the
three method including DSSG, TC and SDGM. Each measure for each dataset is normalized by

the maximum absolute value observed among all 3 methods.

Comparison. The objective is to minimize — log Pg_(D,)+L(C,|C,_;) to summarize
each state s of a dynamic graph (see Problem 4.2). Hence, we evaluate each method using
this as a measure. For simplicity, we denote the number of bits required to encode a graph
snapshot D, given the background distribution P¢ , i.e., —log P& (D) by L(Dj), and
the number of bits required to encode all the atomic changes, i.e., L(C;|C,_1) by DL. At
places, we use superscript I and F' to represent the initial and final values of each state
s respectively. The LT (D,) + DL values of all states in each dataset for each method are
presented as distribution (shown as box plots) in Figure 4.5b. It is observed in this figure
that DSSG yields lower values across all states in four datasets except in WORKPLACE and
DBLP, where TC is better than DSSG. To understand this, we compute the difference
between the initial and the final values as the extent of decrease by each method. This
decrease is equivalent to the total ZG achieved by performing all actions in state s, and

is represented as:

84



4.5. Experiments

L{(D,) =0, as ngcf_l LF(Dy)
> -~ - N —_——TN—
IG = | —log Pcs(D,) + L(C{|CL,) | — | —log Por(Ds) +L(CY|CLLy)

= log Por (D) — log Por (D) — L(CL|CL)) .

-

c DL

The similar distribution for ZG (Figure 4.5a) indicates that for DSSG the value of
ZG is always positive in each dataset, unlike TC and SDGM, where it can be negative.
This is in line with Problem 4.3 where DSSG performs actions with positive information
gain only, where other methods do not explicitly solve a similar problem. It shall also
be seen in case of WORKPLACE that ZG is mostly negative for TC but is always positive
for DSSG. Hence, it may not be seen as a fact that lower value of L¥(D,) + DL alone
indicates effectiveness of a method. However, lower value of L¥(D,) + DL along with
higher positive value of ZG can be considered as parameter to evaluate the efficiency of
a method. We also observe that in case of DBLP, TC is better than DSSG is both
measures of L¥(D,) + DL and ZG. To further investigate, we analyse the components of
ZG, namely, LI (D), L¥(D,), ZC and DL in Figures 4.5c-4.5f respectively.

In Figure 4.5¢, we do not observe similar distributions of L!(D,), which indicates
that all methods start from different points implying that each method have in principle
different measure of interestingness of a pattern. For any method, lower values of L' (D)
(Figure 4.5d) may indicate that the summary is more informative considering the analyst’s
prior knowledge. The observed trend in L¥(D,) is similar to the trend observed in case
of L¥(D,) + DL (Figure 4.5b) which suggest that lower value of L¥(D,) is a major
contributing factor. We observe lower values of L (D) in DBLP for TC among all three
methods.

Although, higher values of ZC are desirable, it is observed in only 2 datasets for DSSG,
i.,e., MATHOVERFLOW & THEMOVIEDB, and in rest 4 datasets for TC. The high values
of ZC for TC comes at a cost of higher values of DL as compared to DSSG (Figure 4.5f)
which at many times lead to lower or even negative value of ZG. In Figure 4.5f, in most

dataset except DBLP, least values of DL for DSSG are observed. However, in case of
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Fig. 4.5. (Continued) Plots showing the distribution of different measures over six datasets for
each of the three method including DSSG, TC and SDGM. Each measure for each dataset is

normalized by the maximum absolute value observed among all 3 methods.
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DBLP, SDGM yields relatively lower values of DL and TC yields higher values of DL
compared to DSSG. Moreover, the lower values of DL by SDGM in DBLP do not describe
patterns with high information content ZC, in Figure 4.5e. It is also argued, that even
though TC performs better in case of DBLP compared to DSSG, this, however, comes
at a cost of discovering the patterns with higher value of DL. The high value of DL
indicates two possibilities, either the patterns found are less dense compared to DSSG, or
have size either larger or smaller compared to DSSG and opposite to the expected size of
pattern which is fixed using parameter ‘q’ in DSSG.

From the above observations, it may be concluded that DBLP is an exceptional case
where TC performs better than DSSG. We also observe that even in the initial state, where
the background distribution is the same for each DSSG and TC, TC finds patterns with
higher ZG. This exception could be due to the limitation of the hill-climber, in DSSG,
used to discover new patterns, is likely to suffer from the problem of local convergence.
This limitation can be resolved by increasing the number of independent seed runs (here,
fixed at 10 for all dataset) of the hill climber.

We highlight the observed key differences in the summaries obtained using DSSG
compared to TC and SDGM in the following points:

1. The prior knowledge of the analyst including the knowledge obtained in the pre-
vious state is not considered in either TC or SDGM. We draw this inference from
the observed lower values of ZG and higher value of both DL and L (D,) (hence
L¥(D,) +DL) by TC and SDGM compared to DSSG.

2. DSSG finds dense patterns of size as expected by the analyst, with much lower value

of DL.

3. Unlike TC and SDGM, in DSSG the number patterns to summarize a dynamic
graph is not required to be explicitly fixed beforehand. Rather, DSSG by itself
identifies the number of patterns sufficient to summarize a dynamic graph by only

performing actions which yields positive information gain.

Besides the above-mentioned differences, neither TC nor SDGM captures the process of

evolution of a dynamic graph in contrast to DSSG as discussed in the following subsection.
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Thus, it can be seen that the summary provided by DSSG is different from the summaries

provided by other methods such as TC and SDGM.

4.5.5 Qualitative Analysis

In this subsection, we discuss how the summary created by our proposed approach can be
meaningful to a domain expert. Since we provide a summary of the changes in a dataset,
the effectiveness of the discovered patterns can be assessed by the information captured
in the sets of patterns and the actions performed on them. We analyze the results*!®

obtained for DBLP, REUTERS and THEMOVIEDB.

DBLP. For the DBLP graph, we discuss one of the various captured chains of sub-
graph patterns, which demonstrates the evolution of the communities of 92 authors cen-
tered mainly around Christos Faloutsos from Year 2010 to 2015. This evolution is shown in
Figure 4.6. Initially (Figure 4.6a) in Year 2010, two surprisingly dense communities shown
as pattern ‘A’ and ‘B’ are discovered, where Christos Faloutsos is a common link between
the two communities. These two different communities have been condensed in the follow-
ing year and merged to form a single community, shown as pattern ‘C’ (Figure 4.6b) with
Christos Faloutsos and U Kang being some of the prominent names. This collaboration
network shrinks the next year (Figure 4.6¢). In Year 2013 another very densely connected
set of authors is discovered, shown as pattern ‘D’ in Figure 4.6d. Surprisingly, in the sub-
sequent year, this set of authors got split into two different communities of three authors
each, i.e., Lisa Friedland, David D. Jensen & Amanda Gentzel and Christos Faloutsos,
Jay Yoon Lee & Danai Koutra. However, the latter set of authors got merged with a
newly discovered densely connected set of authors centered around Christos Faloutsos
and Evangelos E. Papalexakis, shown by pattern ‘H’ in Figure 4.6e. Finally, in year 2015
the two different communities where Christos Faloutsos is the common link, i.e., pattern
‘C’ and a part of pattern ‘H’, merge to form one community with Neil Shah starting the
collaboration with Leman Akoglu and others. In short, we captured how the community

around one author with a large number of collaborations evolve over time.

4.15Tp the following figures, graphs are shown such that the text size of a vertex label is proportional to

its degree. That is, if vertex degree is higher then text size is larger and vice versa.
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Fig. 4.6. Shown is the evolution of patterns in the DBLP network from Year 2010 to 2015.
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Fig. 4.7. Shown is the evolution of pattern(s) in REUTERS network from Day 11 to Day 26.
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Fig. 4.7. (Continued) Shown is the evolution of pattern(s) in REUTERS network from Day 11

to Day 26.

Reuters. For the REUTERS network, we discuss the evolution of the set of 736
identified words in the dataset over a time span of 16 days, i.e., from day 11 to day 26, as
shown in Figure 4.7. On day 11, a pattern (‘A’) of 269 words is discovered, where some
of the prominent words include Friday, Airline, Global, Thursday, Foreign, Economic,
Pakistan, State and Crisis (Figure 4.7a). Since the 11th day from the 9/11 attacks is
Friday, it is hardly surprising to see Friday as a prominent word in this pattern. However,
inclusion of words like Lufthansa, Jean, Unfair, etc. is interesting, as these words are not
densely connected in the dataset. This pattern gets subsequently decomposed into five
different patterns the following day, as shown in Figure 4.7b, followed by a merge with
a newly discovered pattern (resulting pattern ‘H’). Words such as Economic, Impact and
Continue, which are densely connected in the original pattern, are no longer associated
with any of the high degree words, such as Saturday and Minister in the current state. A
further shrink of pattern ‘H’ is observed on the 13th day (Figure 4.7¢), which is Sunday
and can be explained by the fact that fewer articles are published on that day. On the
15th day, after a series of actions, a pattern ‘W’ emerges (Figure 4.7d). This pattern
however vanishes on the 17th day (Figure 4.7¢). Some of the noteworthy words in this
pattern are Tuesday, Member, Foreign, Pakistan, Group, State, and President. Following
this state, the next pattern ‘X’; is found on the 24th day (Figure 4.7f), which grew in size

91
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(via merge) resulting in a new pattern, ‘AC’, on the following day 25 (Figure 4.7g). This
pattern existed only for a day and is removed on day 26 (Figure 4.7h). The notable words
in pattern ‘X’ are Minister, Prime, Plane, Palestine and Israel; while in pattern ‘AC’ are

Friday, Tax, Cut, Congress and Minister.

The presence of the day of the week as the most prominent word in a pattern each day
is rather expected. However, the associations with other words are potentially interesting.
One can also easily identify the most important topic of each day in the network from the
discovered patterns, for e.g., Economics on day 11, Gulf on day 12 and 13, Palestine and

Israel on day 24, and Tax Cut on day 25.

TheMovieDB. In this network, we discussed the discovered evolution of different
patterns or communities of 1019 actors from Year 2012 to 2017, as shown in Figure 4.8.
For each found pattern, we also find the associated genres using the hypergeometric test.
A genre is considered to be significant if the p-value after Bonferroni Correction (with
factor 19) is less than le—1. During the Year 2012, two patterns ‘A’ and ‘B’ are discovered
(Figure 4.8a). Pattern ‘A’, with significant genres Action and Comedy, includes vertices
such as Liam Neeson, Josh Pence, David Gyasi and Nick Holder, all with high vertex
degree. Pattern ‘B’ comprises of Sally Field and Lee Pace as high degree vertices and
has Adventure and Fantasy as significant genres. In Year 2013, Pattern ‘A’ splits into 8
resulting patterns (‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’; ‘J’). This suggests that these 8 patterns
represents 8 different communities of actors. Surprisingly, among these 8 patterns (which
are all non-overlapping disjoint patterns), 6 patterns (excluding ‘F’ and ‘G’) got merged
to form Pattern ‘S’ only after pattern ‘K’ is discovered (Figure 4.8b). Hence, it is found
that the actors of the pattern ‘C’, ‘D’, ‘E’, ‘H’, ‘I’ and ‘J’ are indirectly connected through
the actors in pattern ‘K’. Some of the notable actors of pattern ‘S’ include James Badge
Dale, Kyle Chandler, Kirsten Dunst and Will Smith. Pattern ‘S’ has Romance, Crime and
Western as the three significantly associated genres. Pattern ‘S’ is decomposed into 12
different patterns in Year 2014 (Figure 4.8c). All the 12 resulting patterns have different
significantly associated genres such as, Action with pattern “T’, Science Fiction with ‘U’
Documentary with ‘W’, Fantasy with ‘X’, Animation & Family with ‘Y’ and ‘AE’, War
with ‘Z’ & ‘AD’; Crime with ‘AA’, Drama with ‘AB” and Comedy with ‘AC’. Most of the
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patterns disappear in the following two years, i.e., 2015 and 2016, except patterns ‘T’ and
‘AE’. In Year 2017, pattern ‘AE’ merges with a newly discovered pattern ‘AF’, resulting in
pattern ‘AG’. Thus, pattern ‘T” and ‘AG’ are observed in Year 2017 (Figure 4.8d). Some
of the prominent actors in pattern ‘T’ are Sylvester Stallone, Lady Gaga, Ben Kingsley
and Alison Brie. Pattern ‘AG’ includes actors like Dustin Hoffman and Oprah Winfrey

and has Animation, Fantasy and Adventure as significant genres.

This case presents how the collaboration between actors evolves over time. The genres
which are significantly associated to each pattern implies that our algorithm successfully

identifies different and evolving subgroups (or communities) in the network.

4.6 Discussion

We propose a framework for summarizing sequential datasets in an online setting. We
define information gain using both the maximum entropy principle and minimum descrip-
tion length principles. This measure enables not only to quantify the informativeness of
a pattern, but also of the proposed actions (or atomic changes) in our framework, which
enables to capture the evolution in a graph by evolving patterns. The proposed generic
framework for subjective summarization of sequential data can be further instantiated for
different types of evolving datasets, such as event sequence databases. In this paper, we

instantiated the proposed generic framework for dynamic (simple) graphs.

This work focuses on the discovery of an online summary of dynamic graphs, by iter-
atively identifying actions with maximum information gain. The summary of a dynamic
network contains a set of subgraph patterns (or constraints) along with captured changes
in those (chains of) patterns over time. The findings from the experiments performed on
different networks indicate that 1) the generated summaries are informative with regard
to the analyst’s prior knowledge about the data, with relatively high observed compression
ratios; 2) the sets of subgraph patterns identified to summarize the networks are found
to be relatively dense; and 3) the discovered evolving patterns provide an informative
sequence that can be further inspected and analyzed. Also, with the proposed measures
of information gain and information content, our method can be used to rank the found

patterns.
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We observe during the experiments that a pattern might appear regularly or sporad-
ically in different snapshots of a dynamic network. This leads to a situation where our
method learns and forgets the same pattern multiple times. However, on each occasion,
our method treats the same pattern as newly acquired knowledge. It would be interesting
to identify these instances while summarizing a network over time. A way to address this
limitation could be to label each subgraph pattern and explore the similarity between two
subgraph patterns. Thus, similar to TimeCrunch [Shah et al., 2015], the periodicity of a
pattern could be explored. Another limitation of our work is the consideration of prior
belief of the analyst. In this setting, we only consider that the analyst has prior knowl-
edge on the initial snapshot and is interested in observing the changes in the network. A
different setting may consider that the analyst knows about the different snapshots of the

network.

One future opportunity includes improving the scalability of the proposed framework.
The runtime of the proposed algorithm is currently higher than the two methods used
to compare the summaries provided by DSSG, including TimeCrunch [Shah et al., 2015]
and SDGM [Tsalouchidou et al., 2020]. Notably, the other two methods have a highly
optimized implementation using parallel and distributed computing capabilities. For now,
DSSG sequentially executes multiple procedures, including the number of independent
seed runs of the hill climber. These procedures are highly independent and could be
executed simultaneously. Hence, DSSG has several inherent features which may allow
a parallelized implementation. This would significantly reduce the runtime and improve
the scalability of the algorithm. Another future opportunity includes the development of
a tool based on the proposed framework, for interactive visualization and exploration of
changes identified in a dynamic network. This tool would further provide a user-friendly

platform for analysts to learn how a network evolves with time.

4.7 Summary

We presented the novel problem of subjective summarization of sequential data in an
online manner. As a specific instance of this generic problem, online summarization of

dynamic graphs was introduced. We presented a framework to solve this problem, which
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has been built on the existing ideas related to maximum entropy principle, the minimum
description length principle, and subjectively interesting subgraph patterns. We then
introduced an efficient algorithm, called DSSG, which is followed by extensive experiments
on real-world datasets. Through experimental results, we demonstrated the effectiveness
of the proposed algorithm. The generated summaries are found to be informative with
regard to the analyst’s prior knowledge about the data. We conclude this from the
observed substantial compression ratios and the fact that compression equates learning.
We have also found different sequences of patterns, which evolved over time in a network.
As a part of future work, it would be interesting to extend the proposed method to
incorporate a feature to capture periodicity of the patterns; another is to extend this
method to multigraphs, weighted graphs, and attributed graphs. The proposed framework
is tuned for evolving multigraphs in the following chapter. Finally, as a part of our
ongoing/future work, we aim to develop a tool for interactive visualization and exploration
of the found patterns. However, a brief idea of visualizing the generated summary is

presented as a case study on airline network in Chapter 6.
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Chapter 5

Subjective Summarization of Evolving

Multigraphs

Many real-world phenomena signify interaction (edges) between vertices which evolve and
are best represented as dynamic graphs. At any instance or time interval, more than one
edge may likely exist between two vertices — for example, two or more flights may be
operational from one airport to another at any given time interval. In such case, upon
segmentation of a dynamic graph into a sequence of graph snapshots, each snapshot is
ideally represented by a multigraph — having parallel edges. This type of dynamic graphs
is referred to here as evolving multigraphs.

Summarizing dynamic graphs has been a widely studied problem, but to the best of
our knowledge, the problem of summarizing evolving multigraphs is not yet addressed
explicitly. We address this gap in the literature through an approach for subjective sum-
marization of evolving multigraphs, which summarize an evolving multigraph considering
the analyst’s knowledge. For this, we instantiate our previous proposed generic framework
for subjective interestingness for sequential data. Here, we propose a new efficient mea-
sure to approximate the most interesting pattern in an evolving multigraph heuristically.
We also propose a new encoding schema for evolving multigraphs to encode the atomic
changes (or ‘actions’) suggested on the analyst’s current knowledge at each step.

We refer to the algorithm proposed for evolving multigraphs as DSIMP. The structure
of this algorithm is the same as the DSSG algorithm. We will also demonstrate its efficacy

through experiments on some of the real-world cases of evolving multigraphs.
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5.1 Introduction

Lately, different methods have been proposed in the literature to solve the problem of
dynamic graph summarization. Most methods consider a dynamic graph as a sequence of
simple graphs. In the previous chapter, we proposed a novel generic framework for online
summarization of sequential data using subjective interestingness. This framework is then
instantiated for dynamic graphs — presented as a sequence of simple graph snapshots.
However, it has been observed that for any given instance or time interval, the correspond-
ing graph snapshot may not necessarily be a simple graph and may contain parallel edges
between any vertex pair. Following instances can realize this observation: two authors
may co-author more than one publication (in a co-authorship network), two-actor may
work together in more than one movie (in a co-actor network), and two flights may be
scheduled from one airport to another (in an airline network). In turn, these instances
evince that the graph snapshot is indeed a multigraph; and a sequence of multigraphs is

referred to as an evolving multigraph.

In this chapter, we propose an instantiation of our generic framework of subjective
online summarization for evolving multigraphs. However, the definitions proposed for
evolving simple graphs cannot be directly adapted for ewvolving multigraphs due to the
existence of parallel edges. Thus, a different encoding scheme is required to encode both
a multigraph pattern and the atomic changes (or ‘actions’). The same proxy measure
used to discover subgraph patterns in evolving simple graphs cannot be directly used in
evolving multigraphs either. Note that in Chapter 3 we used the measure of aggregate
deviation to discover multigraphs patterns; however, we will show in this chapter that

this measure cannot be adapted. Thus, we propose a new efficient measure for the same.

Thus, the contributions of this chapter are two-fold. First, we propose a novel measure
which is used as a proxy to discover multigraph patterns. Second, we propose a new

coherent encoding schema to encode actions in case of evolving multigraphs.

This chapter is organized as follows. The data and notation with the formal prob-
lem definition of subjective summarization of evolving multigraphs are presented in Sec-

tion 5.2. We discuss the proposed approach is Section 5.3 followed by experiments in
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Section 5.4. Finally, we conclude this chapter in Section 5.5.
5.2 Preliminaries

In this section, we introduce the evolving multigraph data and define the notation adopted

in this chapter. We also briefly describe the problem of subjective online summarization.
5.2.1 Data and Notation

A multigraph is denoted as GM = (V,EM), where V is a set of N vertices and EM
is a multiset of edges, where each edge ¢ € EM is an element of V x V. Notably,
there can be repetitive elements indicating parallel edges between two vertices in an edge
multiset of a multigraph. An evolving multigraph is denoted as G¥ = (V, EM), where
EM is the multiset of edges that occurs in time interval T'. More precisely, each element
e = (u,v,t*,t/) € Er represents an edge between vertices u and v which exists between the
time period represented by t° (start time) and ¢/ (end time). There exist edges between
the same pair of vertices, but with the same, different or overlapping time periods. Also,
there can exist repetitive elements in Fp, indicating multiple edges between two vertices
in the same time period.

An evolving multigraph can also be treated as sequential data, i.e., a sequence of
snapshots, after segmenting the time interval 7" into multiple shorter time intervals (for
example, seconds, minutes, hours and so on) of same or different length. For simplic-
ity, we consider the segmentation of time into multiple shorter intervals of equal lengths.
Thus, any edge that exists in a given time interval is considered to appear in the corre-
sponding snapshot. Hence, we project an evolving multigraph into a sequence of different
multigraph snapshots Gy, G, ..., Gs, where S is the total number of snapshots upon
segmentation. The corresponding adjacency matrix of a multigraph snapshot G is rep-

resented by Dy € DV*V | where D = Nj.
5.2.2 Subjective Online Summarization of Evolving Multigraphs

As proposed earlier in Chapter 4 (Problem 4.2), we propose a similar problem of subjective

summarization of evolving multigraphs. The problem is formally presented as follows.

Problem 5.1 (Subjective Summarization of Evolving Multigraphs) Given an
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evolving multigraph G consisting of a sequence of snapshots Gy,...,Gs , with Dy the

corresponding adjacency matriz for a state s, and prior beliefs B, find:

e for Di: a set of constraints Cy that minimizes —log Pf(Dy) + L(Cy), where Pf

1s computed using constraints BUC;

o forD,, withs € {2,...,S}: a set of constraints Cg that minimizes —log P.(Dy)
+L(C,|Cy_1), where P is computed using constraints BUC,

S

such that each pattern in any set Cg is a connected multigraph pattern.

Similar to Chapter 4, we propose to solve Problem 5.1 by iteratively solving Prob-

lem 5.2, which is presented as follows.

Problem 5.2 (Online Summarization of Evolving Multiraphs) Given the current
state s, multigraph snapshot G, corresponding adjacency matrix Dy, current constraint
set C,, and background distribution Pg_perform that action ‘e’ from the set of all possible

actions having maximal information gain ZG, given by
ZG(a) = IC(a) — DL(w),
such that the pattern(s) obtained after performing ‘e’ are connected (sub-) multigraph(s).

We present the actions on constraints set C; along with their encoding scheme in the

following sections.
5.3 Proposed Approach

In this section, we present a new measure to discover multigraph patterns efficiently and
then present the possible actions to update the analyst’s knowledge of the data with the

proposed encoding scheme.
5.3.1 Self Information of a Multigraph Pattern

In Problem 5.2, we propose to perform an action having maximal information gain, which
is the difference of information content and description length. Notably, when an ac-

tion is proposed the information content is a non-negative quantity representing that the
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codelength required to encode the data reduces (see Definition 4.1). The action with max-
imal information gain ensures that the codelength required to encode the data is reduced

maximally in a minimal complexity.

As seen in the previous chapter to identify the best action with maximum information
gain to perform, add is the most computationally expensive task. The search for the most
interesting pattern in the worst case requires evaluating a total of 2/V! possible candidate
patterns. In case of a static multigraph, we observed the same in Section 3.5. Thus,
an efficient way is to use a heuristic search method such as the hill climber proposed in
Algorithm 3.1. Further, in Section 4.4, we realized that in hill climber heuristic search,
naively computing ZG at each step is also cost-inefficient. Given this, the use of proxy
measure has been proposed in place of ZC, which requires practical computation com-
plexity. However, the proxy proposed for evolving simple graph data cannot be used in
evolving multigraph data. The reason has been earlier discussed and highlighted in Chap-
ter 3, i.e., due to different structural properties of a multigraph, the definitions proposed
for simple graphs are not applicable.

The above challenge can be remedied by the use of the measure of aggregate deviation
proposed for static multigraphs in Chapter 3, Definition 3.1, as a potential alternative. In
Section 4.4, for simple graphs, it has been suggested that the self-information proposed
in van Leeuwen et al. [2016] can be used as a proxy measure as it is positively correlated

to the ZC.

Although the measure of aggregate deviation AD is efficient in defining a multigraph
pattern’s usefulness, we observed that it might not be a good proxy measure for ZC.
In Figure 5.1, we observed that ZC and AD are somewhat correlated but AD may not
considered as a suitable proxy measure of ZC. Hence, we next explore another suitable
measure to quantify the interestingness of a multigraph pattern. Since the previously
suggested proxy measure for simple graphs is a self-information based measure, it is
evident that a self-information based measure for multigraphs can be an effective proxy

measure.

We know that the maximum entropy distribution for a multigraph is a product of

independent geometric distributions. A pattern can be considered informative if it has
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Fig. 5.1. Shown are the plots of AD vs ZC for different type of prior beliefs. In each plot,
AD = ZIC line is shown (dash-dotted) with a linear fit curve (red solid dashed). The value
of Pearson’s correlation coefficients r are mentioned in the subcaptions. We used a synthetic
multigraph of 20 vertices, which is synthesized using the method given in Section 3.6, such that

pp = 0.8, pg = 0.4 & | =10. AD and ZC is computed for all subgraphs such that AD > 0.

at least k edges. For a multigraph pattern 0™ having W vertices and kjj, edges, we
consider the probability of having a sum of kjj, edges between ny, unique vertex pairs.
The expected number of edges between each vertex pair is represented by an independent
geometric distribution with probability of success p,,. This fact implies that for nj,
random variables, we are interested in having at least k{j; combined failures before having
a first success in each case. In much simpler words, for a multigraph pattern, this is the
case of the probability of having ki, edges. Notably, nj;, is also the maximum possible

number of edges in an equivalent simple graph of the same number of vertices.

Thus, we compute the probability using the upper bound for the upper tail probability
for a sum of multiple independent geometric random variables, possibly with different

parameters. The resulting theorem is as follows.

Theorem 5.1 Let X, X5,..., X, ben independent geometric random variables with pos-

sibly different distributions: X; ~ Ge(p;) with 0 < p; < 1, where E[X;] = =2 Purther-

pi
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more, let X =30 | X; and p =Y. E[X;], then for any A > 1:

Pr(X 2 i) < exp (—pmn 0= 1) = puGut i (S5 ).

where, p, = min; p;.

For brevity, the proof of Theorem 5.1 is relegated to Appendix B.1.

The above theorem can be translated for the case of a multigraph pattern, such that

: S _ 1—pu,v s
NS NOW My, L= cyuce e 18 the sum of expected number of edges between nj;,

vertex pairs, and Ay = kjj;. Thus, we get the following result.

+ S
Pr([W, ky]) < exp (—p*(k’v"v — 1) = p«(p+ niy) In <—Afn o )) )

Wherea Px = minu,vEW,u<U Puv-
Since the self information of a pattern is defined as the negative logarithm of the
probability [De Bie, 2011b], for a multigraph pattern the same can be defined:

SZ(0™) = —log (Pr([W, kw]))

w) (5.1)

> 0 )+ e i)

In Figure 5.2, for the same synthetic multigraph, we observe that SZ is highly cor-
related with ZC, having a correlation of r = 0.9988 for prior belief-c and r = 0.9848 for
prior belief-i. Therefore, SZ is a suitable proxy measure for ZC. It is of note that SZ is
always less than ZC, but both are increasing functions.

Computationally, SZ requires a worst-case complexity of O(|W?), which is still inef-
ficient. However, in a heuristic framework, all the terms in Equation 5.1 can be efficiently
computed by maintaining a list of potential vertices that can be added to a subgraph in
each step. In the list of potential vertices, the potential change—on adding a vertex—
in the values of kjj;, i, ny, and g can be easily maintained. The update of this list
requires—in a worst-case—a linear complexity of O(|V|). Hence, the computation of ST
is cost-effective compared to ZC.

Thus, for the evolving multigraph setting, we propose to use SZ as a proxy measure to

only discover a multigraph pattern, i.e., executing the proposed hill climber based search
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Fig. 5.2. Shown are the plots of SZ vs ZC for different type of prior beliefs. In each plot,
ST = IC line is shown (dash-dotted) with a linear fit curve (red solid dashed). The value of
Pearson’s correlation coefficient is mentioned in the subcaption. We used a synthetic multigraph
of 20 vertices, which is synthesized using the method given in Section 3.6, such that p, = 0.8,
pg = 0.4 & 1 =10. 87 and ZC is computed for all subgraphs such that AD > 0.

algorithm. On the contrary, to decide which action to be performed, we recommend
computing the actual ZC value, as in Figure 5.2 we observed that SZ << ZC. This will

ensure that each action is given a fair chance to compete.
5.3.2 Analysis of Aggregate Deviation versus Self-Information

As evident in Section 5.3.1, aggregate deviation and self-information are two different
measures to define interestingness of a multigraph pattern. The aggregate deviation is
the difference between the actual number of edges and the expected number of edges in a
multigraph pattern. On the other hand, self-information is the negative logarithm of the

probability of a pattern, and is given as

SZ(0™) = —log (Pr([W, kw]))

M) | (5.2)

> (kT — 1) +po(p 4+ niy) In
> 0 = )+ it ) (R

Upon close inspection, it is realized that the aggregate deviation is itself a part of the

above equation. That is, the above equation can be re-written as
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ST(0™) = p. x AD + p.(ju+nfy) In (H) . (5.3)
w w

Since we consider relatively dense patterns as interesting, i.e., ky is greater than u.
Hence, the second term in the above equation is a negative quantity. It shall also be noted

that p, is always less than or equal to 1. Therefore, it can be concluded from the above

equation, that SZ < AD (also observed in Figures 5.1 and 5.2).

(a) [W| =3, kI =6, nfy =3 (b) [W| =4, k. =6, ni, =6

Fig. 5.3. Toy example of multigraph patterns.

Let us consider an example of two different multigraph patterns, as shown in Figure 5.3.
Upon considering a hypothetical situation, where p and kjj, are the same for both cases,
then the usefulness of either example cannot be determined with AD; not considering the
description length. Interestingly, evaluation of the SZ value for both cases may distinguish
the usefulness of a pattern to the analyst. This is because nj, is greater for the case shown
in Figure 5.3b than for the case in Figure 5.3a. Also, the second term in Equation 5.3 is
strictly decreasing for nj, > 0, when p and kyj, are constant such that kjj; > p. Thus,
ST for the pattern in Figure 5.3a would be larger than SZ for the pattern in Figure 5.3b.
Thus, we can anticipate discovering denser patterns with the measure of SZ compared to
the measure of AD.

In another case, we consider two patterns, ; and #, having the same number of vertices
but different edges. In a scenario where AD is equal for both patterns, then AD cannot
decide between either pattern, but SZ can. The reason for this is the different values of
ps« and p for both patterns. If kj} is greater for 6; than 6, then for AD to be equal, i

for 0, has to be greater than 6. Also, to accommodate a larger u, p, has to be smaller.
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Thus, we can say that SZ for 6, will be less than ;. Therefore, as per SZ, a pattern is
more informative, if fewer edges are expected, given that AD is the same.

Therefore, it can be inferred that SZ is a better measure than AD to define subjectively
dense multigraph patterns. Further, we confirm our analysis with the experiments on

various static multigraph datasets in the latter part of this chapter.

5.3.3 Actions and their Encoding Strategy

Since the problem of online summarization for the evolving multigraphs is the same as
for the evolving simple graph, the same type of actions defined for simple graphs can be
used in case of multigraphs. However, when the number of edges is also described, the
maximum number of possible edges in a multigraph are unknown beforehand. Thus, a
multigraph pattern cannot be described using the same complexity as required in simple
graphs. We now discuss an optimal encoding schema for a static multigraph pattern and
for the actions to summarize an evolving multigraph.

A simple graph pattern is described by encoding the vertex set and the number of
edges in a subgraph. A multigraph is described similarly, but with a difference in the
strategy to encode the number of edges. In a simple graph with W vertices, the number
of edges ki, is minimally described by encoding the number of edges short in a subgraph
compared to a clique of the same number of vertices. That is, the maximum possible
number of edges nj;, in a simple graph is known; thus, we encode the term nj, — kyj,. This
method allows us to describe the number of edges in a subgraph, which is surprisingly
dense, using minimal complexity.

The same strategy cannot be used in case of multigraphs having W set of vertices
as the maximum possible number of edges njj; in a multigraph cannot be defined. To
overcome, we realized that the number of edges kjj; in a multigraph pattern is always
greater than or equal to kj, (the number of edges in a simple graph equivalent). In other

words, the relationship between kjj, and ki, is given as

w =0 X ki, (5.4)
where o is a non-negative real constant. With this relation, we can encode ki, using
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Table 5.1. Shown are the formulation of Description Length (DL) for each defined atomic

change, « or action for the case of evolving multigraphs.

e} DL
Add ToatTep +Tw
Remove Ta+Tc
Update Ta+Tc+Ten,
Shrink Tat+tTo+Ten, +Tr+Trw
Merge Tat+2XTc+Tkn,
Split Ta+Te+Tu+Tiw, +Tw, + Ty

Tao=1log(l), Tc=1log(|C|), Ty =Ln(ny —ky +1) +log(tw) — log(d),

Trm, = Ln(niy, — kjyo + 1) + log(rw) —log(8), T, = Ln(|¥|)

—where ¥ is the number of vertices removed,

Trw =log(|[W|) +1og(|W| = 1)+ +log(IW| = [¥| + 1), T =Ln(7), Tyw,| =i Ln((Wi)),
Tw, =log([W]) +log([W] = 1) + -+ +log(|W] — 2 + 1) — where z = [;_, Wi,

Ty, = i1 Ln(njy, — kiy, +1) +1log(r;) —log(0), Tw = [W]log(q) + ([V] - [W])log (1 — q)

minimal codelength by encoding ki, and o separately. Here, kjj, is an integer number
which can be minimally encoded using codelength Ly(nj, — ki, + 1) [Rissanen, 1983],
and o is a positive real number which can be minimally encoded in log(c) — log(¢d) bits
[Lee, 2001]. Note that, in a simple graph equivalent of a multigraph nj;, is known, and to
encode o, 4 is the given precision such that |0 — 05| < d, where o5 is a truncated number.

The only limitation of using this method is that some accuracy is inevitably lost.

The method proposed in Chapter 4, to encode the set of vertices in a pattern and
the information required to encode an action, can also be used for the case of evolving
multigraphs. Hence, most encoding strategies to encode a sub-component in each action
remain as given in Chapter 4 - Table 4.2. The only encoding strategy that is unique for

multigraphs is the encoding of the number of edges.

The encoding strategies proposed for each type of action in case of evolving multigraphs
are summarized in Table 5.1. We encode the type of an action to be performed in 7T, bits,

which is required for each type of action. The information to identify the constraint on
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which an action is performed is required in case of all actions except add, and is encoded
using 7 ¢ bits. The set of vertices in a pattern for add action is encoded using 7Ty bits, the
vertices removed in shrink action using 7T, + 7., bits, and vertices in each component
after split using 7w, + Tw, bits. The number of edges in a resulting pattern(s) is
encoded in Tym and ’Tk% bits for add and split actions, respectively. While for actions
such as update, shrink and merge, the number of edges in the final pattern is encoded
using 7’;@% bits. Finally, in split the information about the number of resulting new

patterns is also encoded using 7, bits, where 7 is the number of resulting patterns.

5.3.4 The Algorithm

The problems of online summarization of evolving multigraph and evolving simple graph
are almost the same. Hence, the DSSG algorithm proposed in the previous chapter,
Section 4.4, can be used for evolving multigraphs. However, to discover a new pattern or
constraint, the new proposed heuristic measure in Section 5.3.1 will be used. For clarity,
in the case of evolving multigraph, we will refer to this algorithm as DSIMP.

It shall be noted, since the two algorithms —DSSG and DSIMP— are the same; hence,

the overall runtime complexity also remains the same.

5.4 Experiments

In this section, we will demonstrate the efficacy of the proposed framework of online
summarization for evolving multigraphs and the proposed algorithm DSIMP. We will also
investigate the difference between the two measures of interestingness for a multigraph
pattern, i.e., one based on aggregate deviation and the other based on self-information. For

this, we incorporate the definition of self-information for multigraphs in SIMP framework.

5.4.1 Results on Static Multigraphs

In this section, we analyse the patterns observed using the SZ measure with the SIMP
algorithm, proposed in Chapter 3. Hence, we use the same real-world examples, as given
in Section 3.6. For the experiments, we use interest-based seeding strategy with 10 inde-
pendent seed runs and q=0.01.

In Table 5.2, the properties of the most interesting pattern discovered by the SIMP
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Table 5.2. Shown are the properties® of the most interesting multigraph pattern discovered

using different configurations of SIMP on each dataset.

DS Configuration |V]| Ey kg pm p° nm d y best

SZ-c 14 501 91 5.51 1.00 35.79 1.00 29.29 *
E SZ-i 14 501 91 5.51 1.00 35.79 1.00 29.29 *
E AD-c 15 524 105 4.99 1.00 34.93 1.00 27.93
A AD-i 15 524 105 4.99 1.00 3493 1.00 27.93

AD-m 18 406 125 2.65 0.82 22.56 1.00 15.61

SZ-c 16 226 120 1.88 1.00 14.13 1.00 6.63
E ST-i 9 142 27 3.94 0.75 15.78 2.00 12.78 *
E AD-c 30 448 435 1.03 1.00 14.93 1.00 0.43
A AD-i 30 448 435 1.03 1.00 14.93 1.00 0.43

AD-m 30 448 435 1.03 1.00 14.93 1.00 0.43

SZ-c 137 13916 9279 1.49 1.00 101.58 1.00 33.85
E SZ-i 102 10034 5151 1.95 1.00 98.37 1.00 47.87 *
E AD-c 140 14626 9692 1.50 1.00 104.47 2.00 35.24
A AD-i 142 14780 9843 1.48 0.98 104.08 2.00 34.77

AD-m 140 14626 9692 1.50 1.00 104.47 2.00 35.24

SZ-c 55 1495 1485 1.01 1.00 27.18 1.00 0.18 *
E STZ-i 55 1495 1485 1.01 1.00 27.18 1.00 0.18 *
S AD-c 55 1495 1485 1.01 1.00 27.18 1.00 0.18 *
A AD-i 71 1663 1653 0.67  0.67 23.42 2.00 0.14

AD-m 71 1663 1653 0.67  0.67 23.42 2.00 0.14

ST-c 4 18 6 3.00 1.00 4.50 1.00 3.00
m SZ-i 3 14 3 4.67 1.00 4.67 1.00 3.67 *
g AD-c 137 1037 837 0.11 0.09 7.57  4.00 1.46
&

AD-i 85 560 425 0.16 0.12 6.59  4.00 1.59

AD-m 86 543 451 0.15 0.12 6.31 3.00 1.07

* Here, |V, kf};, p™, n™ and d represent the number of vertices, number of edges, density, average
vertex degree, and diameter, respectively, observed for a multigraph pattern, along with a new defined
parameter . We also show the properties of a simple graph equivalent of a multigraph pattern, i.e., a
vertex induced simple subgraph of same set of vertices, V. The properties shown for simple subgraph
equivalent are number of edges kj}, and density p°. For each dataset the best value for each property is

highlighted in bold and the best pattern by a star symbol.
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algorithm on each dataset are shown. For each dataset, we consider 5 different configu-
rations of SIMP, i.e., the combination of 2 proposed measures of interestingness (SZ and
AD based) and the types of prior belief used. Note that in Chapter 3, we proposed 3 types
of prior beliefs, but SZ cannot be used with belief-m, as the corresponding background
distribution is a product of independent distributions, where each distribution is not a

natural form of the geometric distribution.

We observed in Table 5.2 that the patterns found using SZ for either type of belief are
much denser with a high value of p than the patterns found using the AD measure. For
example, in DBLP2, the value of p™ for SZ-i observed is 3.94, which is much higher than
the maximum value of 1.03 with AD measure. The observed low values of diameter d and
high value of v in most of the datasets for the SZ-c and SZ-i configuration indicates that
with the SZ measure SIMP discovers patterns having densely connected vertices with a
high number of parallel edges. Hence, these observations assert our analysis that patterns

found using the SZ measure are denser than the patterns found using AD.

For SZ, among the two types of prior beliefs, the densest patterns are observed for
belief-i. This is because the background distribution is not uniform, unlike belief-c, and
hence, one may expect a high number of edges between a pair of vertices. Thus, p, in case
of belief-i is even smaller than belief-c, which leads the SIMP algorithm with SZ measure

to find even denser patterns for belief-i.

Among the two measures, i.e., AD and SZ, patterns corresponding to SZ are smaller
in size, with fewer vertices compared to patterns found using AD. We argue that one
of the reasons is the fact discussed in the previous section, that SZ < AD. Also, a hill
climber based algorithm will allow the pattern to grow in size only when the increase in
ST or AD is more than the complexity required to encode one additional vertex, i.e.,
change in DL. Thus, under similar conditions, a hill climber during the search is more
likely to add a vertex in a seed pattern when the measure of AD is used, in place of ST.

We also observed that IMDB is an exceptional case, in terms of the size of the patterns
found with SZ compared to patterns found with AD. In this case, the size of patterns
corresponding to SZ is much smaller than the patterns found with AD. This is because

among the five datasets, IMDB is least dense, with sparsely connected vertices (see Ta-
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ble 3.1). Since AD is only the difference between the actual and expected sum of edges,
not considering the size of a pattern. Hence, it allows the algorithm to grow a pattern
during the search process. On the other hand, SZ has the term of nj;, which reflects the
pattern’s size, allowing a pattern to grow only if a pattern is densely connected with a

relatively high number of edges.

It shall also be seen that even though with SZ we discover highly dense patterns,
these may not be every time qualitatively useful. As seen for IMDB, patterns with a
size of 4 and 3 vertices with belief-c and belief-i, respectively, may not be a piece of
useful information. Hence, in this case, AD is a decently better measure qualitatively, as

observed in Section 3.6.4.
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Fig. 5.4. Shown are the properties of the top-10 patterns found by each configuration of SIMP.
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The observations made above are also noticed for the top-10 patterns. In Figure 5.4,
we observe that among different configurations of SIMP, the densest patterns are found
using SZ-i configuration, followed by SZ-c¢, AD-¢ and AD-i, in non-ascending order. In
Figure 5.4a, the distribution of density of all top-10 patterns for each configuration is
shown. While, in Figure 5.4b, the distribution of v value for all top-10 patterns in each
case is shown. In Figure 5.4a, in case of configuration SZ-i, the median value of density is
greater than the other cases in each dataset. However, in Figure 5.4b, the median value
of v is greatest for SZ-i configuration only in 3 out of 5 datasets. The parameter 7 is
also dependent on the size of a pattern, similar to the average vertex degree and may not

always represent a generalized trend.

5.4.2 Results on Evolving Multigraphs

In this section, we demonstrate the efficacy of the proposed framework and DSIMP on

some real world examples of evolving multigraphs. The datasets used are shown in Ta-

ble 5.3.

Table 5.3. Shown are the properties of the evolving multigraph datasets used in this section.
Here, |V is the total number of nodes in the graph, |Fg| is the total number of unique edges
without timestamp (also removing parallel edges), |Er| is the total number of edges with times-
tamp, 7T is the total time period for which the edges in the graph are considered, ¢ is the time
period covered by each individual state, and |S| is the total number of states considered for each

dataset.

Dataset V| |Es| |E7| T t N

DBLP>! 44000 123979 154719 10 years 1year 10
THEMOVIEDB?>? 8292 236691 254467 10 years 1year 10

The two datasets in Table 5.3 are constructed, where vertices represent authors or ac-
tors, and an undirected edge between two vertices represents a co-authored publication or
co-acted movie, in DBLP and THEMOVIEDB, respectively. Each dataset is constructed

for the total timespan between the year 2009 and 2018, i.e., 10 years. In DBLP, we
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consider only the publications in any of the top-20 Machine Learning and Data Mining
conferences and journals. In THEMOVIEDB, we consider only those actors who have a
popularity score of at least 2. Since each state’s timespan is one year in each dataset,
there may exist more than one publication or movie—co-authored or co-acted—by any
two authors or actors, respectively. Hence, DBLP and THEMOVIEDB datasets are best

represented as evolving multigraphs where each snapshot is a static multigraph.

We use the prior belief of type ‘¢’ for each dataset for experiments, and to discover new
constraints or patterns, we fix the parameter ‘q’ to 0.01 with 30 independent ‘interest’

based seed runs.

In Figure 5.5, the fingerprint of the summary generated is presented for both DBLP
and THEMOVIEDB. The fingerprint is a visualization of actions suggested at each iter-
ation of the DSIMP algorithm. It is observed that add and remove are the two most
common suggested actions among the 6. This observation indicates that most of the
subjectively interesting communities are short-lived (usually for one year) or are constant
not evolving with time, i.e., the pattern’s size is constant and is similarly dense during
this period. However, there are also patterns identified which dwindled or grew with time
via shrink, split and merge actions. Though the number of such actions performed in
DBLP are significantly lower is number. It shall also be seen that no update action is
suggested for either of the datasets. One reason is that the density of the initial patterns

found is high, and the pattern may not be found to grow beyond it.

In Figure 5.6, we observe that with each action performed the codelength—required
to encode the data given the background distribution—decreases and the mean of the
average density of all patterns corresponding to the constraints in the set Cg increases.
This observation is in line with the observations for evolving simple graphs in the previous
chapter. This is because DSSG and DSIMP have the same structure, and both work on
similar ideas.

Interestingly, in Figure 5.7, we observe that DSIMP discovers the set of constraints
for each state with a high compression ratio but lower coverage. For example, in DBLP,
the maximum compression ratio of above 15% is observed with coverage around 0.6% of

28 constraints in state S3. Similarly, the smallest compression ratio for THEMOVIEDB is
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Fig. 5.5. Shown are the fingerprints of the summaries generated for evolving multigraphs, i.e.,

the horizontal axis represents the iteration in each state and the vertical axis represents the

actions performed during the corresponding iteration.
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Fig. 5.6. Codelength (blue solid line) vs average of the average densities of patterns in set

C;(orange dashed dotted line) vs states. The vertical dashed lines indicates the change of state

and the horizontal axis represent from left to right all iterations, where a series of actions is

performed for each consecutive state.
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Fig. 5.7. Properties of the found set of patterns (or constraints) Cs in each state s. Here,
]Cﬁ; | represents the number of constraints after each state (represented by red star symbols),
coverage represents the fraction of vertices of the dataset covered by all patterns combined, and
CR represents the compression ratio, i.e., 1 minus the ratio of the encoding cost (number of bits,
computed as —logy, P(D)) of the data given the initial background distribution and given the
final background distribution.

observed in state S2, where with 12% coverage via 118 patterns more than 30% of com-
pression is observed. This observation indicates that the proposed methodology discovers

information which is surprising or not known to the analyst.

We now discuss the information captured by performing the changes in the constraint
set at each step. In this process, we identified a total of 188 and 1346 chains of evolution or
evolving patterns (see Figure 4.1g) in DBLP and THEMOVIEDB network, respectively.

We discuss one example each of an evolving pattern found in both networks.

a. DBLP: In this case, we present an example of a closely connected community of
22 authors (see Figure 5.8). In the year 2009, a pattern of 12 authors is discovered having
a high number of co-authored publications, say Pattern A. In the year 2015, the group
is now found to be working in two different subgroups, and hence, DSIMP suggested
splitting the pattern into two, i.e., Pattern B & C of size 3 and 5 vertices, respectively.
However, it is also discovered that one of the subgroups is closely connected to a new group

of 10 authors, represented as Pattern D. Thus, DSIMP performed a merge action to form
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Fig. 5.8. Shown is the evolution of patterns in the DBLP network from Year 2009 to 2015. To

avoid cluttering, parallel edges are not shown.
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Fig. 5.9. Shown is the evolution of patterns in THEMOVIEDB network from Year 2009 to 2016.

To avoid cluttering, parallel edges are not shown.
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Pattern E. The three significant patterns in the chain of evolution are Patterns A, C and
E, which are densely connected with respective densities of 0.94, 1.0 and 0.91. Hence,
this example demonstrates the evolving dynamics and associations between authors with

time.

b. THEMOVIEDB: In Figure 5.9, we show an example of how a group of 145 actors
may have worked during the time between the year 2009 and 2016. In the year 2009 (see
Figure 5.9a), a community of 25 actors is discovered who worked together in 7 movies
that released this year with comedy being the most popular genre of 6 movies. In the
following year, a split is suggested to decompose the pattern A into two patterns ‘B’ and
‘C’. The actors of pattern ‘B’ worked together in 1 movie of a music genre, while actors
of pattern ‘C” worked together in a total of 5 movies having family, comedy and drama as
prominent genres. In Figure 5.9¢, the resultant pattern ‘D’ of add followed by merge with
pattern ‘C’ is shown, as suggested by DSIMP. Pattern ‘D’ represents that the community
now consists of 97 actors who are connected for working together in a total of 33 movies.
Among these movies, the three most common observed genres are comedy, drama and
thriller. In year 2015 (see Figure 5.9d and 5.9¢), pattern ‘B’ is suggested to be removed
and split is performed on pattern ‘D’, decomposing it into 4 different patterns ‘E’; ‘F,
‘G’, and ‘H’. Also, in the same year two merge actions are also performed following two
add actions. In the first merge, pattern ‘G’ is merged with a newly found pattern to bring
about pattern ‘I’. Similarly, pattern ‘H’ is merged with another newly discovered pattern
to result in pattern ‘J’. The most commonly observed genre in each pattern, i.e., ‘E’, ‘F’,
‘I” and ‘J’, are comedy, drama, action and drama, respectively. Finally, in the year 2016,
all the 4 patterns are suggested to be removed. Thus, this example demonstrates how
the community of actors evolved where they usually worked in the movies of comedy and

drama genres.

From the above experiments, it is evident that DSIMP is equally capable as DSSG,
for summarizing evolving multigraphs. The DSIMP algorithm efficiently captures the
evolution of different interesting communities in the multigraph networks discovered when
found to be surprisingly dense. It shall be noted that even for the same dataset, i.e.,

THEMOVIEDB, in either scenario—considering it as an evolving simple graph (for DSSG)

119



5. Subjective Summarization of Evolving Multigraphs

or as an evolving multigraph (for DSIMP)—the summaries generated are significantly

different.
5.5 Summary

In this chapter, we introduced a new instance of the novel problem of subjective sum-
marization of sequential data, as presented in Chapter 4. Here, we presented the case
of subjective summarization of evolving multigraphs. We argued that the measures to
quantify the interestingness of a simple subgraph pattern and the strategy to encode the
corresponding information cannot be used for multigraph patterns. Hence, we proposed
a novel self-information based interestingness measure as proxy to information content
in order to discover multigraph patterns in a network. The proposed measure can be
efficiently computed with lower time complexity compared to information content and
discover patterns which are densely connected. Besides, we also proposed a unique en-
coding strategy to encode a multigraph pattern. The efficacy of the proposed measures
is demonstrated by incorporating them in an algorithm termed DSIMP and performing

experiments on real-world examples of evolving multigraph networks.
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Chapter 6

Investigating Airline Networks

In the previous chapters, we saw that subjectively interesting patterns reveal information
relative to what the analyst already knows. In this chapter®!, we use this fact to study
airline networks to learn unexpected patterns. In airline operations, decisions are made
on scheduling and other operational problems after gathering insights from the historical
data. Thus, subjective interestingness based data mining methods provide a means to
learn beyond what airliners may already know. Hence, in this chapter, we present various
applications of the different proposed subjective interestingness based algorithms in this

thesis.

6-1Parts of this chapter has been published in
[Kapoor et al., 2020]: Kapoor, S., Saxena, D.K. & van Leeuwen, M. Discovering subjectively interesting
multigraph patterns. In Mach Learn, Springer, 109, 1669-1696 (2020); and
[Kapoor et al., 2021]: Kapoor, S., Saxena, D.K. & van Leeuwen, M. Online summarization of dynamic
graphs using subjective interestingness for sequential data. In Data Min Knowl Disc, Springer, 35,

88-126 (2021).
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6.1 Introduction

High traffic volume in an airline network is a significant concern, as an airline would like to
avoid interruptions and delays in their operation network. Like in a road transportation
network, in an airline network, heavy traffic on specific routes causes congestion, resulting
in delays, high demands of gates at the airports, increased fuel consumption, and increased
workload of the support staff including air traffic controllers [Wu, 2016]. Together, these
factors cause degradation in airlines and airports’ on-time performance measures, causing

heavy losses in the operations [Zou and Hansen, 2012].

Over recent years, the use of historical data to study airline operations has been widely
explored. The most extensively studied problems in the aviation domain include: flight
delay analysis & prediction [Carvalho et al., 2020]; impact of delays on airline cost, airfare,
and flight frequency [Ball et al., 2010; Peterson et al., 2013; Zou and Hansen, 2014]; delay
propagation in national airspace [Wu and Wu, 2018]; aircraft maintenance routing [Liang
et al., 2015]; and airline schedule generation [Zhou et al., 2020]. The focus in aviation has
been on building descriptive, predictive and prescriptive models. Descriptive models are
used to enhance the understanding of the data, build deeper insights into the targeted
problem, and verify the causes of events in the data. On the contrary, predictive models

are used to forecast an event, while prescriptive models aid in decision making.

Flight delay analysis is one of the routine problems studied extensively to build both
descriptive and predictive models. In the past, several models for predicting flight delays
have been proposed employing different machine learning algorithms such as random
forest [Gui et al., 2019], support vector machines [Wu et al., 2019], reinforcement learning
[Balakrishna et al., 2008], gradient boosting decision tree [Manna et al., 2017], and deep
learning methods [Kim et al., 2016]. On the other hand, descriptive models have been
proposed to learn patterns causing delays using methods such as frequent pattern mining
[Sternberg et al., 2016], subgroup discovery [Proenga et al., 2018], K-means clustering
[Woodburn and Ryerson, 2014], and DBSCAN [Tian et al., 2019].

In the literature, different studies have been carried out to predict different categories

of delays. The Bureau of Transportation Statistics, US [BTS, 2019] classifies delays into
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5 major categories, which are:

e Air Carrier delay: delays in control of airliners such as aircraft maintenance, crew
issues, baggage handling, or refuelling.

o [Lxtreme Weather: delays due to extremely harsh weather conditions such as cyclone,
tornado, and heavy snowfall.

o Late Arriving Aircraft: delays due to the aircraft used in a flight which has been
delayed on it previous flight.

e National Aviation System (NAS): delays in the airside operations due to airport or
air traffic control operations, nonextreme weather, and heavy traffic.

e Security: delays due to boarding operations such as screening of passengers, board-

ing/reboarding, and high passenger flow.

To the best of the author’s knowledge, NAS delays have been limitedly studied, with
little or no dedicated work on investigating the factor of heavy traffic volumes. Wang
et al. [2003] studied the impact of NAS delay propagation, Hao et al. [2014b] investigated
the impact of the specific airport on NAS delay, and Sridhar and Swei [2006] explored
the relationships between the factors causing NAS delays. While a short-term prediction
model for NAS delays based on weather index is given by [Sridhar and Chen, 2009].

Similarly, another commonly studied problem in the aviation domain is airline schedul-
ing. It is a complex problem composed of several sub-problems. One of the sub-problems
is optimal Scheduled Block Time (SBT) selection. Based on historical data analysis, sev-
eral descriptive models have been proposed to study the behavior of airliners towards
SBT selection [Hao and Hansen, 2013, 2014]. In the most recent work, Kang and Hansen
[2017] investigated airliners’ behavior upon SBT adjustment. Another gap observed in the
literature is the application of network analysis to study airliners’ behavior in scenarios
of heavy traffic volumes.

As mentioned earlier, with the research gaps, we argue that subjectively interesting
subgraph patterns can provide potential insights about the network, such as regions that
experience or may experience unexpectedly heavy traffic volumes. These insights can

be used to understand the dynamics of a network, select the optimal SBT for a flight,
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and possibly even predict delays in the network. Therefore, this chapter discusses the
possible applications of subjective interestingness based algorithms in learning from an
airline network. We represent the airports by vertices and flights between the airports
by directed edges from an origin airport to a destination airport in an airline network.
We consider various snapshots of the network for a given time duration, where edges are
added only for those flights that are either departing from an origin airport or arriving at

a destination airport in the given time duration.

The remaining part of this chapter is organized as follows. In Section 6.2, we analyze
the airline network as a multigraph using the SIMP algorithm and study the discovered
patterns. In Sections 6.3 and 6.4, we present a methodology to construct features using
SIMPs to build a scheduled block time selection model and delay prediction models, re-
spectively. In Section 6.5, we present an application of the DSSG algorithm demonstrating
how an analyst can efficiently study the structural changes in the network in an online
and incremental manner to render valuable insights. Finally, we conclude the chapter in

Section 6.6.

6.2 Patterns in a Static Airline Network

In this section, we analyze subjective multigraph patterns in an airline network using the
SIMP algorithm proposed in Chapter 3. As discussed in previous chapters, such an airline
dataset can be best represented as a directed multigraph. We focus on finding regions in
the network that are likely to experience a high delay due to heavy traffic, categorized in
the data as the NAS (National Aviation System) delay. There could be various factors
for NAS delay, but heavy traffic is one of the major factors accounting for NAS delays
[BTS, 2019].

From the on-time performance data by Bureau of Transportation Statistics (BTS),
US%2—we consider 298 commercial airports with 450017 flights that took place in Jan-
uary 2017. As a first case, we investigate the most interesting patterns for each day
over the month of January 2017. For each day, we construct the background distribution

based on prior beliefs taken from the flight schedule data; note that this is a very realistic

6-2https://www.transtats.bts.gov/Datalndex.asp
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6.2. Patterns in a Static Airline Network

scenario, as the schedule informs our expectations and we look for deviations from these
expectations in the actual flight data. As a second case, we build the background dis-
tribution from scheduled data for each hour of a specific day, i.e., 22nd of January 2017.
We consider flights either arriving or departing from any airport in any time block on the
day, we have 20 time-blocks of one hour each (from 0400 hours to 2400 hrs, all converted
to Pacific Standard Time). We exclude cancelled flights from the data, as these would

have an infinite delay.

The most interesting patterns per time frame found by SIMP are shown in Figure 6.1.
Figures 6.1a and 6.1b show that the patterns found by SIMP have a reasonably large
number of NAS delayed flights in the set of flights present in the found pattern. This
shows that the first patterns found by SIMP-i and SIMP-m have a fairly large ‘precision’,
indicating that a fair number of the NAS delays occurs in these patterns. This is corrob-
orated by Figure 6.1¢ and 6.1d, which indicates that, among all delayed flights present
in a pattern, a fair set of flights are categorized as NAS delayed. To verify that these
patterns are the primary source of NAS delay, we computed the ‘recall’ of the patterns in
Figure 6.1e and 6.1f, i.e., the number of NAS delayed flights present in the pattern among
all NAS delayed flights in the current view of the network. It was found that SIMP-c
has a reasonably large recall, where around 25% of NAS delayed flights were present in
around 10% of the airports of the network (see Figures 6.1g and 6.1h). This is because of
the large size of the patterns. Upon closely inspecting the patterns found by SIMP-i and
SIMP-m, we found that these patterns all have a similar ratio of ‘recall’ to the percentage
of airports in a pattern, but have high ‘precision’, which supports our hypothesis that

NAS delay is most likely to occur in the regions identified by SIMP.

Following the observations on the most interesting pattern per time frame, we analyse
the top-10 patterns shown in Figure 6.2. For this analysis, the union of all top-10 patterns
is considered, i.e., all the airports and flights that were present in any found pattern are
taken together. Analyzing the network over a period of a month, Figure 6.2e shows that
each day the top-10 patterns found by SIMP-c, SIMP-i and SIMP-m have a very high
presence of NAS delayed flights among all the NAS delayed flights in the network on that

day. A similar observation was made in Figure 6.2f while analyzing the airline network,
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Fig. 6.2. Results of top 10 patterns found by SIMP-c, SIMP-i and SIMP-m for two cases, i.e.,

(left) the entire month and (right) a single day.
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each hour for a single day. SIMP-c, SIMP-i and SIMP-m follow almost the same trend to
account for NAS delayed flights in the top-10 patterns (Figures 6.2a-6.2d).

f j f T 0.5
—o— SIMP-c  —s— SIMP-i SIMP-m —o— SIMP-c  —=— SIMP-i SIMP-m
007 6 i1 16 21 26 31 900405 0708 1011 1314 1617 1920  22-23
Day of the Month Hour of the Day

(a) Ratio vs day of the month (b) Ratio vs hour of the day

Fig. 6.3. Plots showing the ratio of % of NAS delays present in top-10 SIMP patterns to the %

of NAS delays present in a baseline pattern having the same number of edges.

To further investigate this, we compute baseline patterns having the top-r airports
with the highest multigraph degree, such that each such pattern has a number of edges
(approximately) equal to the number of edges covered by the top-10 patterns found by
SIMP. We then compute the ratio of the number of NAS delayed flights covered by the
top-10 SIMP patterns to the number of NAS delayed flights covered by their respective
baseline patterns, as shown in Figure 6.3. This ratio is always close to one for SIMP-c,
indicating that SIMP finds patterns with high densities, very similar to our constructed
baseline patterns with this type of belief. SIMP-i and SIMP-m, on the other hand, have
relatively high ratios, above 1 and sometimes close to 2, suggesting that these types of
belief help discover patterns that correspond to NAS delays. These patterns may not
always be structurally dense, i.e., their diameters may be high, but they encompass many
air routes with a larger number of flights. This shows the potential of using prior beliefs—
such as the ones that we propose in this thesis—for finding patterns that correspond to

high traffic congestion, which may lead to NAS delays.

Overall, this exploratory analysis shows that NAS delay is likely to occur in regions of
the network that are subjectively interesting, i.e., relative to Belief-i and Belief-m. These
multigraph patterns might provide strategic information to airliners in the context of

flight schedules.
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Fig. 6.4. Pictorial representation of Scheduled Block Time (SBT) [Hao et al., 2014a].

6.3 Analyzing Patterns and Scheduled Block Times

In this section, we explore associations between SIMP patterns and Scheduled Block Time
(SBT) selection by airlines. The SBT of a flight is defined as the time during which the
engines of an aircraft remain powered on. In other words, it is the time between the
moment an aircraft leaves the gate of an origin airport and the moment it arrives at the
gate of the destination airport, see Figure 6.4. Selecting an optimal SBT is a complex
problem as a trade-off between cost-saving and fuel exhaustion is observed. Shorter SBT
means less fuel loading and higher profit because of less fuel consumption but at the
same time, a likelihood of experiencing fuel exhaustion. Larger SBT comes with high fuel
reliability on-board but at the cost of high fuel consumption and low profits. Since fuel
expenses occupy the top position in terms of the overall cost to a carrier, selecting an
optimal SBT is critical to airliners.

196 along with air

Dataset. In this section, we use the BTS on-time performance data.
carrier statistics data from the T-100 domestic segment of U.S..1%6 for years 2016

and 2017.
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6. Investigating Airline Networks

6.3.1 Preprocessing and Feature Construction

In this study, we use the SIMP framework for discovering patterns in an airline network.
For each day in the year 2016, we create 22 independent snapshots, each of one-hour
duration from 0300 hours to 0100 hours of the following date, where the time is converted
to Pacific Standard Time. For each snapshot, we discover (at most) the top 5 subjectively
interesting patterns using the SIMP algorithm. The motivation is because of the previous
section’s observations, where the subjectively dense multigraph patterns in an airline
network contain a relatively large number of delayed (specifically NAS) flights. It can be
argued that SIMP patterns discover the set of connected airports having a surprisingly
high volume of traffic, and in order to decongest the network an airline may alter the

schedule as well as the SBT of several flights.

For each of the two types of belief, i.e., belief-c and belief-i (see Section 3.3), we create
a binary feature, ¢ and x*, respectively. We assign a value 1 to the flights covered by any
discovered pattern concerning the type of belief used, else we assign value 0. Further, we
have two different formulations of interestingness, i.e., Aggregate Deviation (AD) based
(see Chapter 3) & Self-Information (SI) based (see Chapter 5), and two types of airline
networks, i.e., scheduled (S) & actual (A) flight network. Thus, we create in all eight
different features, represented as Xg(,w where the superscript b represents the type of
belief, the subscript X represents the type of interestingness formulation used, and the

subscript Y represents the type of network.

The data is aggregated for a quarter of a year. Without loss of generality, we remove
all diverted and cancelled flights along with all weekend flights and only consider those
flights which are flown at least 50 times in a given quarter, i.e., during aggregation if the
count is less than 50. In the process, we finally get a total of 16 954 unique observations
in the aggregated dataset. The distribution of each feature in the final dataset is shown
in Figure 6.5, and the pairwise correlation between the features is given in Figure 6.6. It
is of note that during aggregation, we choose to use the mean value for all the 8 newly
created features. In other words, the value of each created feature for each observation

is the ratio of the number of times a flight was a part of an interesting pattern to the
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Fig. 6.5. Plots showing the distribution of each feature in the dataset. The Xg(,y features are

described in Subsection 6.3.1, the other features in Subsection 6.3.2
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Fig. 6.6. Heatmap showing pairwise correlations between the features in the dataset.
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number of times a flight is flown, in a quarter.

6.3.2 SBT Selection Model

The selection of SBT is a complex process, and an airline may consider various factors
for decision making. However, to learn from the data and get insight into how an airline
may select SBT for a year, Hao and Hansen [2013] gave a well known aggregate percentile
model for SBT selection based on multiple linear regression. The authors modelled the
SBT for a flight using flying time data by the same flight during the preceding year. The

model is given as

9
SBT" = ay x DI + ag X disteq + 1 x QUFY + > Big x di

iyi+1
=5
\ (6.1)
+ oy x HHg+ Y  xQY + v x OEPo + 72 x OEPp + K,

q=2

where all «;, 5;, v; and k are coefficients learned from the data.

The dependent or explanatory variables, which are aggregated for a quarter ¢ of a year

y, include:

1. mean departure delay of a flight f, as D%,

2. distance between the origin-destination pair (od) of f, as dist,q,

3. median flying time taken by f, as QY.

4. difference between every 10*" percentile of flying time beyond median flying time,

fay _ ey @y
as di;7y = Q(i+1)/10 - Qi/lO ’

5. dummy variables to capture the seasonal effects of each quarter, as Q¥,

6. dummy variables OEPy and OFEPp to indicate if origin or destination airport is an

OEP 35 airport%3, respectively,

6-3The 35 Operational Evolution Partnership (OEP) airports are the major commercial U.S. airports

with significant flight operations.
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7. market share of a carrier or competition among carriers in an OD pair, as HHI,4.
The HHI,; is the Herfindahl-Hirschman Index calculated as
se \’
HHI,q cg(;d (SOd) : (6.2)
where s, is the total number of seats offered a carrier ¢, and s,4 is the total number

of seats offered by all carriers AC,q flying between the given OD pair.
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Fig. 6.7. Estimation results of the aggregate percentile model (Equation 6.1) on the different
subset of the data depending on the airline carrier. The significant coefficients with p-values
less that 0.001 are highlighted with a star symbol below. The observed R-squared value for
all models is 0.997. Here, AA—American Airlines, UA—United Airlines, DL—Delta Airlines,
LCC—Low Cost Carriers, Combined—All Flights.

In Figure 6.7, we show the estimated coefficients for the model in Equation 6.1, when
the data of the year 2016 is used to fit the SBT selected by airlines for the year 2017.
It is of note that for simplicity, we omit variables ), from the model because similar to
[Hao and Hansen, 2013], we also found that the respective coefficients are insignificant.
Here, it is observed that airlines tend to select the median flying time as the baseline for
selecting SBT for the following year. This is because p-values less than 0.001 indicates

that the coefficients for ()y5, in models for each subset of data, are significant and near
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to 1. Similarly, the coefficients of ds ¢ and dg 7 are also found to be significant in almost
every case. Thus, it is correct to say that most of the airlines target 70" percentile of
flying time as a baseline, which is also targeted Block Time Reliability (BTR) [Hao and
Hansen, 2014]. With similar observations, an exceptional case is Delta Airlines which is
found to target 90*" percentile BTR.

Based on the significance value of each coefficient, we also observed the following points

an airline is found to follow while selecting the SBT for the succeeding year.

1. dist: Only Delta Airlines has a positive and significant coefficient, which suggest

that the airline add few minutes to the baseline corresponding to this variable.
2. OEPy: No airline is found to make changes to the baseline based on this variable.

3. OEPp: American and Delta airlines add more than a minute to the baseline if the

destination is an OEP category airport for a flight.

4. HHI: American airlines subtracts from the baseline based on the market share on a
flight route. At the same time, Delta and United airlines add to the baseline based

on this factor.

5. k: All airlines are found to add some minutes to the baseline, irrespective of any
factor. United airline adds the most—more than 5 minutes, Delta and American
add near to 4 minutes, whereas the Low-Cost Carriers add the least—which is 3

minutes.

6. D: In the combined case, the coefficient is found to be significant, but for airline-
specific case the coefficients are insignificant. It is somewhat expected as departure
delay is a part of effective block time but not the actual block time, which is the only
time span that matters to the airlines as the fuel would be consumed only in this
duration (see Figure 6.4). Thus, any delay that occurred during the airborne, taxi-
out and taxi-in phases may affect an airline’s choices. Nevertheless, these factors

are counted indirectly in terms of actual flying (block) time.

Thus, we can conclude from the observations that American and Delta airlines evalu-

ates and learns from more decision-making factors than the other airlines, and thus, have
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a more rigorous model. On the other hand, United airlines and the Low-Cost Carriers,
generally make the decisions very straight-forward, where they target 70" percentile BTR
and add few minutes to select the SBT.

We found that the aggregate model effectively models the choices that an airline may
have made to select the SBT for the year 2017, where the R-squared value of 0.997 is
observed in each case. It is of note that an airline choice may not be limited to these
factors as the industry practice is to consider a feedback loop where the SBT of specific
flights are altered based on several other factors [Hao et al., 2014a]. Since this knowledge
is not shared by the airliners, it is worth exploring if the SIMP pattern-based variables

explain the SBT selection model used by airlines.

6.3.3 SBT Modelling using SIMP Patterns

In this section, we explore whether SIMP variables can potentially explain the SBT se-
lection model of airlines. The motivation is to learn whether an airline integrates the
knowledge of high traffic volumes (both anticipated and observed dense region) in the
process of selection of an optimal SBT or not. For this, we adapt the model given by Hao

and Hansen [2013] (Equation 6.1).

In the exploratory analysis, in Figure 6.5, we observe that the eight constructed fea-
tures have different distributions compared to the decision variables considered in Equa-
tion 6.1. We also observe in Figure 6.6 that the new features have a maximum correlation
with only three decision variables, including HHI, OEP, and OEPp. These decision
variables capture the traffic densities between an OD-pair, at the origin airport and the
destination airport, respectively. Similarly, the SIMP patterns also discover the regions of
high traffic volume in the network. However, the SIMP patterns find time-based patterns

or regions that are not best represented by any of the three variables mentioned above.

Since among the newly constructed features high correlation is observed in multiple
cases (see Figure 6.6) and to better understand each feature’s relevance, we consider
eight different and independent multiple linear regression models. In each model, we only

consider only one of the eight SIMP-based features as a dependent variable. Hence, a
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model is represented by Mé’(’Y and is given as

9
SBT]‘Z’erl = ay X DY + ag x distoq + P X QY 4 Zﬂi_g X df;ﬂryl
i=5

6.3
—|-043><HHIOd—|—"}/1XOEP0+’}/2XOEPD+/€ ( )

b,f.q
+W><Xxjjigy'

Notably, also in this case, we do not consider the dummy variables to capture seasonal
effects because of the same reason mentioned earlier.

Regression Analysis:

In the first scenario, we fit the eight multiple linear regression models considering one of
the eight SIMP-based features at a time on the complete dataset of all airlines combined.
We found that the adjusted R-squared value is close to 1 and can be considered a good
fit. We found in Figure 6.8 that the coefficients of SIMP-based variable in 6 out of the 8
models are found to be significant, and the coefficient with maximum magnitude is -1.1.
This suggests that airlines may have considered this knowledge in the process of SBT
selection, where 1 minute is subtracted from the 70" percentile BTR.

The significant SIMP-based features belong to the category of prior belief-i. For belief-
i, we discovered patterns which are small in size and denser compared to the patterns found
by belief-c. This indicates that for the flights which are covered by any of the discovered
subjectively dense patterns relative to belief-i (most of the time in a quarter)—airliners
tend to select around 1 minute shorter SBT. Also, we observed that when belief-c is used
in conjunction with the SZ based interestingness measure, then also the SIMP based
variables have significant coefficients. This is because the size of the patterns found by
this measure are smaller than the AD based measure. It is also intuitive that as feedback
from schedulers, airliners may alter the SBT of an only limited set of flights based on
some unknown factor. Among these unknown factors, it can be conjectured that SIMP
based variables explain some of the factors that an airline may have considered.

We investigate the same models for specific airlines®* (see Figures 6.9-6.12), including
the American Airlines, United Airlines, Delta Airlines (the three major legacy carriers of

US) and Low-Cost Carriers (includes Frontier, JetBlue, Southwest and Spirit Airlines).

6-4The results in tabular form are relegated to Appendix C.1.
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Fig. 6.8. Estimation results of 8 different multiple regression models for the dataset of all airlines
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Fig. 6.9. Estimation results of 8 different multiple regression models for the dataset of only
American airline’s flights (number of observations is 4148). The significant coefficients with
p-values less that 0.001 are highlighted with a star symbol below. The observed R-squared value
for all models is 0.997.

138



6.3. Analyzing Patterns and Scheduled Block Times

: i i i i
Mp, s B3 Mip,a KXX M§ s EAA Mg 4 i i i i
61 : i i i i
EEE M,,s = M,,, I Mg Mg, i I I I
' ' ' ' ' ' ' | | | |
51 i i i i i i i i i i i
i i i i i i i i i i i
| | | | | | | | | | |
= 4 i i i i i i i i i i i
S i i i i i i i i i i i
= 31 i i i i i i i i i i i
= i i i i i i i i i i i
% 2 i i i i i i i i i i i
1 I I I I I I I I I I I
Q i i i i i i i i i i i
O ! Lo ! ! ! ! ! LR !
! ! ﬂg@l | ! ! ! ! il ! e

ol . : ___; A : ﬂ: al:llmi ___E ____E __,,_E __,,_E [l : .u.&@n; - Y
]i i i i i i i i i i i i
b | | | | | | | | | | |
-1 i i i i i i i i i i i
1 1 1 1 1 1 1 1 1 1 1
i | etk Aok Aok | et ded kA | rdededededok | | | | | ik kA | |

X 5 00.5 d5,6 d6,7 d7,3 dg_g dg_]_o dist HHI OEPO OEPp

Variable

Fig. 6.10. Estimation results of 8 different multiple regression models for the dataset of only
United airline’s flights (number of observations is 2563). The significant coefficients with p-
values less that 0.001 are highlighted with a star symbol below. The observed R-squared value
for all models is 0.998.

We observe the largest coefficients for x' 7.5 and X's1.4 (also significant, see Figure 6.9).
This observation indicates that American Airlines, a legacy carrier, prefers high reliability,
as it selects higher SBT for flights that are usually covered by patterns with unexpectedly
high traffic volumes, realising both the scheduled and the actual flight operations. In
other words, American Airlines adds 5.36 minutes and 2.26 minutes to the selected SBT
for the flights which are always covered by corresponding subjectively dense patterns, as

indicated by x%; 4 and X%, g, respectively.

On the contrary, we observe a different behavior for United Airlines (see Figure 6.10),
which prefers to only aim at targeted block time reliability without considering any other
factor except market competition (through HHI). In the case of Delta Airlines (see Fig-
ure 6.11), among the new SIMP-based features only the coefficient of x§; ¢ was found
to be significant. Hence, we can say that Delta Airlines only learns from the scheduled
flight network and reduces the length of selected SBT during the feedback loop, for flights

which are usually covered by the patterns found using belief-i.

Interestingly, in case of low-cost carriers (LCC) the coefficients of the features corre-
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Fig. 6.11. Estimation results of 8 different multiple regression models for the dataset of only
Delta airline’s flights (number of observations is 2223). The significant coefficients with p-values
less that 0.001 are highlighted with a star symbol below. The observed R-squared value for all
models is 0.997.

sponding to patterns under belief-c, i.e., x§; ¢ and x%g; 4, are found to be significant (see
Figure 6.12). This is opposite to the behavior of American Airlines, a legacy carrier. One
of the reasons for this exception could be the mode of operation of both categories of
airlines. That is, American Airlines follows a ‘hub and spoke’ model, while LCC operate
on a ‘point to point’ connection model. This is supported by the fact that with prior
belief-i, SIMP commonly finds star-shaped patterns, where one vertex acts as a hub and
is connected to other vertices acting as spokes. In contrast, with belief-c, SIMP usually
finds a highly connected set of vertices, where a vertex is directly connected to a high

number of other vertices representing a ‘point to point’ connection model.

Finally, we conclude from the above that the process of selecting the SBT appears
to be associated with the SIMP-based variables. Since we are not affirmative whether
airliners take into account the knowledge of SIMPs, it is worth exploring the ‘what if’
scenarios. For example, investigating what are the benefits associated, if an airline may
have altered the selected SBT based on the insight provided by SIMPs. The benefits

can be anything, even subjected to an airline’s preference. We know that the Federal
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Fig. 6.12. Estimation results of 8 different multiple regression models for the dataset of only
Low-Cost Carrier’s flights (number of observations is 3817). The significant coefficients with
p-values less that 0.001 are highlighted with a star symbol below. The observed R-squared value
for all models is 0.998.

Aviation Administration’s (FAA) aspiration for Destination 2025 plan is to improve flight
predictability in an airline network [Hao et al., 2014a]. Therefore, it will be interesting to
explore this aspect using SIMPs. Due to unavailability of domain knowledge about the
exact process of SBT selection, evaluating the benefits of using SIMP-based knowledge is

beyond the scope of this thesis.
6.3.4 Discussion on SBT selection

In the study of SBT selection, we investigated different airliners’ behavior for selecting the
SBT for a flight. However, it may be noted that selecting an optimal SBT is a complex

process as airliners face a trade-off, where:

1. selecting a larger SBT implies

- higher fuel loading & consumption,
- higher travelling time for a passenger,
- higher negative delays with high airport charges on arriving earlier than sched-

uled,
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+ better reliability, on-time performance, less positive delays, lower missed con-

nections by a passenger.
2. selecting a smaller SBT implies

- high likelihood of positive delays,

- lower reliability & on-time performance,
+ lower fuel loading & consumption,

- high possibility of fuel exhaustion,

+ lower travelling time for a passenger.

Based on the above trade-off of selecting an optimal SBT, an airliner may target more
than one objectives to optimize. In a future scope of this work, it will be interesting to
learn how the SIMPs can better address all or most of the objectives targeted by an airliner
during the process of SBT selection. However, a critical challenge in this further study is
the availability of airline-specific data and domain knowledge for the process followed for
SBT selection. Nevertheless, the SIMPs may prove to be a tool for the airliners towards

efficient SBT selection.
6.4 Predicting Delays in an Airline Network

In this section, we investigate the potential of SIMP-based features for the prediction of
delays in an airline network. In the previous sections, we found that the SIMPs can be
used to analyze scheduled and actual flight networks to find regions of surprisingly high
traffic volume than expected. We observed that in an actual flight networks, SIMPs have
a relatively high recall and precision in finding NAS delayed flights. We also found that
SIMPs are associated with SBTs. From these discoveries, we now explore the possibility

of using SIMPs to classify and predict if a flight will be delayed or not.
6.4.1 Preprocessing and Feature Construction

In this study, we use the BTS on-time performance data of US Airlines for three different
years, 2016-2018, and convert the date-time features such as arrival time and departure
time (both scheduled and actual) into Pacific timezone. Although the classification of

delayed flights may depend on a large number of features, we only consider features nec-
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essary to describe a flight. The ‘base’ set of seven necessary features which may describe a
flight include: the day of the week, reporting airline, origin, destination, departure block
hour, arrival block hour and distance group. Although, month is also a feature which is
necessary to describe a flight, we exclude it from the ‘base’ set as we will build indepen-
dent models for each month. The reason to using these features is that we only aim to
investigate the SIMP-based features’ potential for delay classification. It may be noted
that building a robust and efficient prediction model is outside the scope of this study.
Without loss of generality, we remove all the instances of diverted and cancelled flights.
To discover SIMP patterns in an airline network, we create the scheduled flight network
using the scheduled departure and arrival times of flights, and similar to previous section
create 22 independent snapshots of each day. Each snapshot is of one-hour duration from
0300 hours to 0100 hours of the following day. In each snapshot, we discover (at most) the
top 5 interesting patterns using the SIMP algorithm. Since we cannot use the actual flight
network details to classify flights in a real-world scenario, we only consider the scheduled
flight network. Thus, for each of the two types of belief, i.e., belief-c and belief-i, and two
different formulations of interestingness, i.e., AD and SI, we construct 6 features. The

features are:

1. isSublnteresting: Binary, where a value 1 is assigned if a flight is covered by any

of the top 5 interesting patterns, otherwise 0,

2. #Sublnteresting: Non-negative integer, specifies the number of patterns that cov-

ers a flight,

3. R,,: Non-negative integer, indicates the minimum rank of all patterns covering a
flight, where rank is the iteration at which the pattern is discovered by the SIMP

algorithm,

4. #inNodes: Non-negative real number, indicates the average number of nodes with

non-zero in-degree in the patterns where a flight is covered,

5. #outNodes: Non-negative real number, indicates the average number of nodes with

non-zero out-degree in the patterns where a flight is covered,
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6. p: Non-negative real number, specifies the average of average densities of patterns
covering a flight, where the average density of a pattern is the ratio of the number
of edges in a multigraph pattern to the maximum possible number of edges in a

simple directed graph equivalent of the same set of vertices.

The first three features quantify the importance of discovering a flight in a region with
surprisingly high traffic volumes, while the latter three features quantify the observed
traffic volume in the patterns. As discussed earlier, heavy traffic is one of the major cause
of NAS delays. Thus, using SIMP-based features, we quantify the unforeseen high traffic
volumes in an airline network and investigate these features’ relevance in predicting flight
delays.

Given that we have four different configurations to run the SIMP algorithm, we name
the set of six features constructed using the patterns in each case as follows. For config-
uration using AD based interestingness, we call the set of features as set ‘AD-c¢’ for prior
belief-c and set ‘AD-i’ for prior belief-i. Similarly, for SI based interestingness, we call
the set of features ‘SI-¢” and ‘SI-i’ for prior belief-c and belief-i, respectively. We perform
one-hot encoding for ‘base’ set features as all features are categorical. Since we consider
298 airports for all three years of data with 12 unique airlines and distances between
airports grouped into 11 categories, we get a total of 670 features after one-hot encoding

of ‘base’ set features.
6.4.2 Experiments

After constructing the features, we now build the classifiers. We build 12 independent
classifiers for each month, where we train the classifiers using the data of the year 2016,
validate on data of the year 2017 to select the best hyperparameters, and test the classifiers
on the data of the year 2018. Although such models may not excel at predicting delayed
flights, we here investigate whether SIMPs are relevant for learning the delayed flights in
the network.

In the experiments, we will find the answer to the following questions:

1. Can the number of misclassifications (false positives and false negatives) be reduced

using SIMP-based features?

144



6.4. Predicting Delays in an Airline Network

0.2751 Baseline Model E*3 Model AD-i B©3 Model Sl-i
72 Model AD-c [ZY Model SI-c
0.250 1
*
* Epe
ik
4 r b B
0.225 b \
r 1 0
_ A<D K
v s (] 1 1 Jo
’5 0.200 4 W< K *
O L Ny o r 9 Jo N
n k 4 W< K _
— * * L o 1 1 Jo *
w 0.175 o 1 3 9 < 3 : q L q
<o 7& L 42 o r 1 o o _’ _ |9
19 X 114 <P X q o k| q
* - o N Kol ~ r 1o ° k Lo
K 1 19 f 114 <P X q b k| q
0.1501 A o 5 Ko i 1 1o g k Ko o
kK 1 (9 K| 114 <P k| q b k|
A o o ) 4 o r 1 |9 i K b 4
K 1 {9 X )14 <D K q o k| ;ﬁ>
0.125 A b g * o g r A Jo g 3 o
K 1 (9 X 114 <D X q DI k| q
A o o L 42 o r 9 Jo o K Kl9 o
K 1 (9 K| 114 <P k q b k|
0.100 : — S : —— : At
1 2 3 5 6 7 8 9 10 11 12
Month

Fig. 6.13. F1 score of each classifier built for different months when the target feature is the
overall delayed flights, the best model for each month is highlighted with a diamond symbol on
the top.

2. How relevant are the SIMP-based features for the prediction of delayed flights?

3. Which configuration of SIMP, among the four contributes the most in learning flight
delays?

For this study, we choose decision tree-based classifiers as they are easy to interpret
and provides the importance of features in prediction. We now build five independent
models for each month using a different set of features, and hence the nomenclature used
corresponds to each set of features used. However, in models using sets ‘AD-c’, ‘AD-i’,
‘SI-¢’ and ‘SI-i’; we also include the features of the ‘base’ set. Thus, the model learnt

using only the ‘base’ set can be considered a baseline model.
6.4.2.1 First Case: QOuverall delayed flights

In the first case, we consider overall delay, which is binary—as target for prediction—
where the positive class includes the flights which are delayed by at least 15 minutes and

arrival delay is larger than the departure delay. Thus, we aim to learn about the flights
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Table 6.1. Shown are the median feature importance (FI) rank in a decision tree classifier and
the median C'hi? rank of the SIMP-based features for the different models, considering the target

feature of overall delayed flights. Total number of features considered in each model are 676.

isSublnteresting #Sublnteresting R, #inNodes FoutNodes g
Model
FI 2 FI 2 FI %2 FI 2 FI 2 FI 2
AD-c 39 75 25 24 34 18 25 2 22 3 12 56
AD-i 44 57 35 21 30 8 28 2 26 3 25 37
Sl-c 48 61 36 38 32 12 21 3 20 3 25 33
SI-i 102 364 103 445 56 102 63 76 52 66 60 254

which got further delayed during the airborne phase. This class may include flights which
are directly or indirectly delayed due to high traffic congestion. Both types of errors, type-
I (non-delayed classified as delayed) and type-II (delayed flight classified as not delayed)
are critical and need to be avoided as much as possible. We evaluate the models based
on the Fl-score of the positive class on the test data. In Figure 6.13, we observe that
the models built using the SIMP-based features are better than the baseline model 11
out of 12 times. It is also observed that the difference in the performance measure is not
significant in most of the cases, but for January and November, a clear improvement can

be observed for models ‘AD-c¢’ and ‘AD-i’ compared to the baseline, respectively.

Further, in Table 6.1, we investigate the relevance of SIMP-based features by observing
the rank at which the features lie based on feature importance (FI) in a decision tree based
classifier. At the same time, we also evaluate the dependency of the proposed features on
the target feature. For this, we perform the Chi? test and show the rank of the variables
based on Chi? statistics. Here, a lower rank feature is better than the features with higher

rank and have a higher dependency on the target feature.

The FI ranks of the SIMP-based features in Table 6.1 are less than 50 for each model
except ‘SI-i’. While in model ‘SI-i’; the FI ranks are between 50 to 103. Since the
total features in each model are 676, the ranks below 50 can be considered as good

features. Similarly, the SIMP-based features in model ‘SI-i’ on the basis on FI ranks
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can be considered as mediocre features. It is of note that the FI ranks are dependent
on the final model, i.e., the one which performs best on the validation data. Thus, for
completeness, the ranks based on the Chi? statistics are also shown which indicates the
relevance of the feature in explaining the target feature based on the training data. The
Chi? ranks of SIMP-based features in each model, except ‘SI-i’, are less than 75 (with
maximum possible rank of 676). This indicates that the features can be considered as

good in explaining the target feature. In these three models, the rank of features R,,,

#inNodes and #outNodes are significantly better with maximum observed rank of 18.
This suggests that SIMP-based features explain the target much better than most of the

‘base’ set, features.

It shall also be noted that the features tsSublnteresting, #Sublnteresting and R,,
have dependencies on each other, as when R,, is 0 for any flight then the other two features
value would also be 0 as none of the SIMPs cover those flights. Thus, one feature is found
to be relatively more relevant than the other two features. In model ‘AD-c¢’, ‘AD-i" and
‘SI-¢’; the SIMP-based features’ ranks show that the SIMPs are relevant in learning about
delayed flights in an airline network. While on the other hand, in the case of Model ‘SI-i’
the SIMP-based patterns are little relevant due to the observed high ranks. This could
be because of the fact that for Sl-based interestingness with prior belief-i, we discover
patterns of smaller size (as shown in Chapter 5), where fewer flights are covered. In other
words, for most flights, the value of these features is 0. This limitation can be overcome

by increasing the number of patterns discovered.

6.4.2.2 Second Case: NAS delayed flights

In this case, we consider NAS delay, which is binary—as target for prediction—where
the positive class implies the flights that are NAS delayed by at least 15 minutes. Thus,
we aim to learn about flights where high traffic congestion is a direct factor of delay.
Similarly, in this case, we also evaluate a classifier’s performance using the F1l-score of
the positive class on the test data. In Figure 6.14, we observe that the models built using
the SIMP-based features are better than the baseline model 10 out of 12 times. We also
observe that Model ‘AD-c¢’ performed the best for 7 out of 12 months. This indicates that
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Fig. 6.14. F1 score of each classifier built for different months when the target feature is the
NAS delay. The best model for each month is highlighted with a diamond symbol.

Table 6.2. Shown are the median feature importance (FI) rank in a decision tree classifier and
the median C'hi? rank of the SIMP-based features for the different models, considering the target

feature of NAS delay. Total number of features considered in each model are 676.

isSublnteresting #Sublnteresting R, #inNodes F#outNodes g

Model

FI 2 FI 2 FI %2 FI 2 FI 2 FI 2
AD-c 60 50 43 17 48 9 33 2 43 3 36 41
AD-i 51 55 51 28 47 11 38 7 39 5 33 45
Sl-c 67 22 56 9 45 1 38 2 33 3 37 11
SI-i 116 72 127 48 97 8 89 16 68 24 76 48
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with belief-c and AD based interestingness, the SIMPs discovered better aids in learning
factors causing NAS delays in the network. We also observed that Model ‘SI-¢’ performed
the best in 2 out of 12 months, which suggests that prior belief-c effectively captures the
NAS delay instances in the network.

Interestingly, in Table 6.2, we observed that now density of a pattern p is among
the top 3 relevant features out of the 6 proposed, in terms of FI ranks. The other two

SIMP-based features are #inNodes and #out Nodes. This indicates that NAS delays are

dependent on the density of traffic volumes in a region identified by SIMPs. Notably,
SIMPs are patterns with surprisingly high density, i.e., relatively large number of flights
are observed than expected. This confirms our motivation that NAS delays are relatively
more likely in regions with unexpectedly high traffic volumes. The rest of the observations,

in this case, are similar to the observations made in the previous case.

6.4.3 Discussion

The problem of delay prediction in an airline network is tricky, as there are many factors,
including human, machine and nature-related, which can cause delays in the network.
On top of it, the airliners also make several changes in the schedule, both strategic and
tactical, to overcome delays. The strategic decisions are made for long term goals (made
3-6 months in advance), including changes in the schedule of a flight (change in SBT
included), whereas tactical decisions are for short term goals (made on the day or 1 week
in advance), including aircraft swapping, changing the priority of a flight by air traffic
controllers to depart & land, as so on. These are some factors which make learning
delay patterns in the network excessively difficult. Hence, the prediction of delays is an

overwhelmingly tricky problem.

In this study, we proposed one way to quantify SIMPs in terms of features to predict
delays. Although we cannot significantly improve the performance measure of a classifier,
we did realise that SIMPs—with different prior beliefs—can be a potential tool to learn the
delay patterns in a network for prediction as we believe that there can be other ways to
efficiently construct explainable features, such as a way proposed by Bringmann et al.

[2011]. The authors proposed that each pattern can be a feature for a pattern-based
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classification, followed by either model-independent feature selection or guided by the

model.

We also argue that other data, such as weather and aircraft, can be used together
with the on-time performance data to build a robust prediction model. However, this
may require to build a scalable prediction model to handle a large volume of data. We

consider this as one of the future directions of our study.

6.5 Exploring an Evolving Airline Network

In this section, we present a case study on the US flight network®® to demonstrate an
application of DSSG and DSIMP algorithm presented in Chapter 4 and 5. Flight networks
are typical examples of dynamic graphs that one would like to analyze on the fly, e.g.,
to detect and monitor delays as early as possible. Since DSIMP and DSSG are similar
algorithms, we only show the application of DSSG in this case study.

6.5.1 Dataset

We use the scheduled and actual flight operating data for the month of January 2017,
with 298 airports (considered as vertices) and 450 017 flights operated in that month. The
dataset has features such as scheduled departure & arrival time and actual departure &
arrival time, for each flight. Using these features we create two types of networks: 1)
in a scheduled flight network, a directed edge for a given time interval is included from
origin to destination airport if at least one flight was scheduled to depart or arrive in that
interval; 2) in an actual flight network, a directed edge is included between two airports
if at least one flight actually departed or arrived in that interval.

For either type of network, we create 31 independent instances, one for each day of
January 2017. Each network is segmented into 20 sequential snapshots, or states, of one
hour each (from 0400 hours to 2400 hrs, all converted to UTC -7). The motivation behind
choosing one hour as the length of a snapshot is that airliners manage their operations in
blocks of one-hour duration each. For simplicity, we do not consider cancelled flights in

this case study.

6-5source: https://www.transtats.bts.gov/
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Fig. 6.15. Actions (and their types) throughout the day as found by DSSG on the scheduled

and actual flight networks of two days.

6.5.2 Approach

We use DSSG to summarize both the scheduled and actual flight network independently.
In both the cases, we assume the analyst to have a prior belief on the number of routes
scheduled to be operated from each airport in the initial snapshot (i.e., the total number
of airports from where at least one flight is arriving and the total number of airports to

where at least one fight is departing). We then inspect the resulting summaries.
6.5.3 Summaries and their comparisons

As the data is large and dynamic, visualizing all patterns or the complete summary at
once is not practical. Instead, Figure 6.15 visualizes the sequence of actions identified by
our method on a given flight network, to provide a high-level overview—or fingerprint—
of the summary. Such fingerprints can then be compared to spot deviations between the
scheduled and actual dynamic networks.

An analyst could investigate the discovered patterns (as shown in Section 4.5.5), but
here we first investigate the differences between the obtained summaries, to learn about
unexpected events (here: delays) causing the observed network to differ from the expected
network. For illustrative purposes, we use the scheduled network of day 14, and actual
networks of days 14 and 21.

Inspecting the fingerprints in Figure 6.15 shows that the actual flight network of day
14 behaves differently from both the scheduled flight network of day 14 (Figure 6.15a)
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and the actual flight network of the same day one week later (Figure 6.15b). For example,
in the initial snapshot (0400-0500hrs) in Figure 6.15a, the prior distribution sufficiently
described the scheduled flight network of day 14, and hence no new patterns are discovered.
In the actual flight network of that day, however, two patterns are discovered for that
snapshot. A closer look at the data reveals that this is caused by flights that operated
either ahead of time or delayed. In Figure 6.15b, similar observations can be made for the
actual flight networks for two days precisely one week apart. To further investigate the
causes of deviations, an analyst could inspect the patterns and actions. DSSG provides
a sequence of actions (descending by ZG) that an analyst could learn from, mainly when

supported by an environment for interactive data and pattern exploration.

6.5.4 Inspecting patterns

To further understand the differences between the flight networks, we consider two typical
block hours, i.e., 1400-1500 and 1500-1600 hours. Figure 6.16 shows the top 5 patterns®6
concerning information content (ZC) and for the same three different networks as above.
Note that this means that we only show patterns that are newly discovered or revised in

the current state.

From Figure 6.16a we observe that, for the scheduled flight network of day 14 during
1400-1500 hours, four out of the five patterns are star-shaped, with hub airports. In the
first pattern (shown in red) MSP is the hub, with flights departing for airports such as
ATW, LNK and MEM. Similarly, patterns 2 (magenta) and 4 (blue) have SNA and ORD
as hubs, respectively. Pattern 3 (green) has STL and EWR as hubs, where flights are
departing, and two other airports, OMA and OAK, where flights are arriving. These
patterns indicate that a large number of flights are scheduled to depart from hubs like
MSP, SNA, ORD and STL, while flights are expected to arrive at OAK and OMA. Finally,
pattern 5 is a connected set of airports including SFO, XNA, ORD and SCE.

In the actual flight network for the same timeslot in Figure 6.16¢, the most informative

pattern is a set of densely connected airports including SLC, DEN, LAS, and SEA (shown

66 An analyst could, of course, visualize all actions or patterns in the summaries, but we only show the

top 5 patterns for reasons of space and clarity.
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(e) Actual Day 21, 1400-1500 hours (f) Actual Day 21, 1500-1600 hours

Fig. 6.16. The top 5 patterns with regard to information content discovered from each respective
flight network. Color coding: the pattern with highest information content is shown in red,

followed in order by magenta, green, blue, and orange. Labels indicate airport codes.
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in red). The second pattern (magenta) is similar to the most informative pattern found
in the scheduled network (red in Figure 6.16a), with MSP as a hub. Patterns 3, 4, and
5 are also star-shaped, with hubs SLC, JAX, and SEA, respectively. Upon investigating
the underlying data, we find that patterns 1 and 3 comprise flights having a combined
positive delay (flights departing and/or arriving late) of 1083 minutes and 23 minutes,
respectively. This is a relevant discovery, as 1083 minutes is a considerable combined
delay, and pattern 1 was not found in the scheduled data. For pattern 2, which we did
find in the scheduled network, no positive delay is observed (instead we find a combined
negative ‘delay’ of roughly 9 minutes, which is very moderate). For patterns 4 and 5
negative delays are observed. Similar observations can be made for the block hour in

Figures 6.16¢-6.16d.

The fingerprints of Figure 6.15b already suggested that the actual flight networks of
days 14 and 21 differ, and this is confirmed by the different top 5 patterns shown in
Figures 6.16e-6.16f. Interestingly, none of these patterns is present in either the scheduled
or actual flight network of day 14, and these patterns are also found to correspond to

substantial positive and/or negative delays.

Together, these observations indicate that by comparing the summaries and patterns
discovered by DSSG, an analyst can learn about sets of connected airports where struc-
tural operational deviations from the schedule occurred, which often resulted in delays.
As such, this case study served to illustrate how our approach could be used in a real-
world scenario where an online and incremental analysis of structural changes in dynamic

graphs can render valuable insights.

6.6 Summary

In this chapter, we presented potential application of the proposed notion of subjectively
interesting patterns for networks and the algorithms presented in this thesis, on a real-
world example of Airline Operations. Within airline operations, the learnings from the
subjectively interesting patterns can be used to analyse and understand the network’s
behavior, both in case of static views and in case of an evolving instance of a graph. We

demonstrated that subjectively interesting patterns discovered using SIMP algorithm can
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be used by an airliner to select an SBT for a flight effectively and can also be used in
building delay prediction models. Finally, we also presented an example of how DSSG can
be used to analyse the structural changes in a dynamic airline network. The application
of SIMPs may not be limited to the domains discussed in this chapter, but could also be

used in other domains such as crew scheduling, baggage handling, etc.
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Chapter 7

Conclusions and Future Scope

7.1 Conclusion

In this thesis, we addressed the concept of subjective interestingness for different graph
types, including static multigraphs, evolving simple graphs, and evolving multigraphs.
This thesis is built on the premise that subjective interestingness measures are instru-
mental and critical in data mining to quantify the actual usefulness of a pattern to an
analyst. Studying a real-world network by employing subjective interestingness measures
in graph mining methods was found to reveal informative and surprising patterns.

It was identified that many real-world scenarios can be best represented as multigraph
or dynamic graph, apart from simple, attributed & weighted graphs. However, in the
literature of graph mining methods, it was observed that most graph mining methods
focused on developing a measure with a fixed belief about the expected structure of a
subgraph pattern. These measures do not consider the analyst’s prior belief and are
limited in quantifying a critical aspect of interestingness, i.e., usefulness to an analyst.
This led to the introduction of subjective interestingness measures. In the past, the
notion of subjectively interesting patterns in a network has been limitedly studied, i.e.,
in static simple graphs [van Leeuwen et al., 2016] and attributed graphs [Bendimerad
et al., 2020]. With the above observations, two main research gaps were highlighted in
this thesis. These gaps point to the fact that the concept of subjective interestingness
has not been developed for static multigraphs and dynamic graphs. Given these research
gaps, the thesis’ goal was to develop graph mining methods using the notion of subjective
interestingness to discover patterns in static multigraphs, evolving simple graphs, and
evolving multigraphs.

In Chapter 2, a comprehensive literature review was presented, and the research gaps
have been highlighted. In Chapters 3-5, we built on the notion of subjective interestingness
as proposed in the FORSIED framework [De Bie, 2011b] to address the identified research

gaps. In these chapters, an analyst’s prior beliefs are modelled as probability distributions
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following the FORSIED framework.

In Chapter 3, an approach defining subjective interestingness of multigraph patterns
has been proposed. Subsequently, to iteratively discover multigraph patterns, a greedy
based heuristic algorithm named SIMP has been proposed. In this algorithm, the pro-
posed interestingness measure emphasizes the novelty and surprisingness of a pattern by
considering the analyst’s prior beliefs through the proposed Aggregate Deviation measure.
Simultaneously, the conciseness of a pattern is ensured by a parameter used to compute
Description Length of a pattern. To emphasize pecularity and diversity of the set of
patterns discovered, it was suggested to update the background probability distributions
after each pattern is discovered. This aids the proposed subjective interestingness mea-
sure to avoid discovering the same patterns again. Finally, the efficacy of the proposed
algorithm, over the above-discussed features, has been demonstrated with extensive ex-
periments performed on several synthetic and real-world data, where it is natural to use

a multigraph for modelling.

In Chapter 4 and 5, a novel framework to summarize dynamic data was proposed, and
an instantiation of the framework was presented for evolving simple graphs and evolving
multigraphs. The proposed framework is built on the concept of subjective interesting-
ness [De Bie, 2011b], but also draws its inspiration from the minimum description length
(MDL) principle [Griinwald, 2007]. This inspiration led to the introduction of the novel
information gain measure, with which the proposed approach discovers concise and com-
pact summaries without having to decide on the number of patterns in advance. Further,
we capture the informative changes in an evolving network employing the proposed atomic
changes which can also be easily interpreted by an analyst. This marked the first attempt
to combine data mining approaches based on subjective interestingness using the MaxEnt
principle with pattern-based summarization using the MDL principle. An instantiation
of the proposed framework was discussed in Chapter 4 for evolving simple graphs (al-
gorithm was termed DSSG) and in Chapter 5 for evolving multigraphs (algorithm was
termed DSIMP). The experiments in both chapters demonstrated the efficacy of the pro-
posed respective algorithms on discovering meaningful evolutions while summarizing the

data.
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Finally, Chapter 6 presented potential real-world applications of the proposed methods
in airline operations. First, a case study was presented on a static airline network where
using the SIMP algorithm, patterns with unexpectedly high traffic volumes were discov-
ered. These patterns were found to constitute a large number of NAS delayed flights.
In the second and third part of this chapter, the application of SIMPs in the process
of SBT selection and delay prediction was discussed, respectively. Finally, a dedicated
case study was presented to demonstrate the potential usefulness of DSSG in analyzing
evolving network on-the-fly.

This thesis highlighted the importance of an analyst’s intervention in a data mining
process with the above contributions. In the proposed methods, the analyst provides
the beliefs about the data before starting the mining process and communicating with
the method through the process in a dynamic setting. Thus, this thesis addressed the
limitation of most data mining methods, where both analyst and the data itself drives
the proposed methods. However, it is still challenging to model every type of prior belief
that an analyst may have. Here, only a few limited types of prior beliefs were discussed.

One of the limitation of the proposed self-information based measure for multigraphs
is that it is only applicable when prior beliefs result in the background distribution that
is represented in the natural form of geometric distributions. We observed this in case
of belief-m for multigraphs. However, aggregate deviation based measure can be used in

such cases.

In DSSG and DSIMP, during the process of learning and forgetting the patterns at
different time snapshots, re-discovery of a pattern was not evaluated. This is useful to
know when a pattern appears sporadically and is discovered by the algorithm multiple
times; here communicating re-discovery of a pattern might require less description length
than communicating it as a new pattern. Hence, this information is useful to an analyst
when periodicity of a pattern is important.

A common significant shortcoming of the proposed algorithms is the observed high
runtimes compared to other state-of-the-art methods. Although several steps are in-
volved in each iteration of the algorithm’s execution, a considerable factor responsible is

the evaluation of all possible seed graphs based on the neighborhood subgraph’s interest-
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ingness value. This evaluation is required each time to determine top-% seeds and execute
k independent hill-climber searches for discovery of a pattern. Notably, in a later stage,
the computational complexity of each algorithm was reduced significantly by eliminating
redundant computations, and parallelizing the top-k seed evaluations and independent
hill-climber search executions for each seed. This led to the runtimes for an experiment
even reduced by upto ten times compared to the runtimes reported in this thesis. The
source code of the optimized implementation of the three proposed algorithms along with
the SSG algorithm [van Leeuwen et al., 2016] in Python3 has been published on Zenodo

[Kapoor and van Leeuwen, 2021].

7.2 Future Scope

The research presented in this thesis offers several exciting avenues. We identified a few
potential future opportunities, for extending the research work carried out in this thesis,

which are as follows.

First, from the theoretical point of view, this thesis can be considered a basis towards
subjective interestingness-based methods for types of networks that are not considered
in this thesis. Potential directions include: 1) subjective interestingness measures for
subjectively interesting patterns in multilayer graphs, 2) subjective interestingness based
learning methods for evolving attributed, and evolving multilayer graphs. In the context
of dynamic graphs, the proposed methods can be further extended to discover periodic

and frequent subjectively interesting subgraph patterns.

Second, the proposed novel framework of subjective summarization of sequential data
in Chapter 4 can be instantiated for other types of data as well. Some of the cases include
evolving attributed graphs, evolving multilayer graphs, and evolving weighted graphs.
Apart from the graph data, the framework can naturally be adapted for any rectangular
dataset represented in different snapshots, such as tile data which evolves with time.

Third, a possible future direction is to study different types and forms of prior beliefs.
As seen in this thesis, the prior beliefs are mostly application-specific and require special
attention to model for computation of MaxEnt distribution. Also, depending on the defi-

nition of a pattern, the formulation of a subjective interestingness measure changes. This
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opens the opportunity to explore different types of patterns according to the requirements
in different real-world applications.

Fourth, the applications of the proposed methods in airline domain presented in this
thesis can be further studied. This includes studying airline networks using DSSG and
DSIMP for SBT selection and delay prediction. Further, it would be intriguing to in-
vestigate feature construction and engineering aspects—using the proposed methods—for
machine learning applications. It would also be interesting to investigate the advantages
of the proposed methods by incorporating domain knowledge and utilizing airline-specific
data.

Fifth, from the perspective of an application in airline operations, several other prob-
lems can be studied using the methods proposed in this thesis. An example is the crew
pairing optimization problem, where the challenge is to assign crews to different flights
in an airline’s operational network, with minimum associated costs and expenses [Ander-
sson et al., 1998]. Crew pairings are generally modelled using graphs; thus, subjectively
interesting patterns can be studied in the context of this problem. A few other similar
problems in airline operations include fleet assignment, baggage handling, and mainte-
nance scheduling of aircrafts.

Finally, applications of the proposed methods are not restrictive to the airline domain.
It is certainly of interest to study other real-world problems dedicatedly. It would also
be valuable to develop a tool based on the proposed methods for interactive visualization
and exploration of the knowledge discovered in a future opportunity. This tool would
provide a user-friendly platform to model an analyst’s prior beliefs and learn informative

patterns in the data provided.
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Appendix A

Proofs from Chapter 3
A.1 Proof of Probability Distribution for Belief-m

The problem of maximizing entropy under the user’s belief about the number of edges

per vertex and the number of neighbors per vertex is given as

argmax — Y P(A)log(P(A)) (A.1.1)
P(A) AeN'an
st. Y PA)Y ay=d; > PA)) a,=d (A.1.2)
AeNg*™ v AeNj*™ u
Z P(A) Z 1Clu;u7é0 = m:ﬁ Z P(A) Z 1au,/u7é0 = mf} (A13)
AeNg*™ v AeNj*™ u
> PA)=1 (A.1.4)
AeNy*"

Since this optimization problem is convex, we solve it using convex optimization meth-
ods [Boyd and Vandenberghe, 2004]. Let us introduce the Lagrangian multipliers A7 & A¢
for constraints in Eq A.1.2, u] & pf for constraints in Eq. A.1.3; and v for constraint A.1.4.
The Lagrangian of the Problem A.1.1-A.1.4 is now given by

L(P(A), A", A, u", u¢9) =

—> P(A)logP(A)+ > N | > PA)D aw,—d

A AeNp*" v
Y X Y PA)D aw—ds | 4D | YD P(A)D L, —m]
v AeNg*n u u AeNg*" v

s Y. PAY e, —mi | 4w | Y P(A)-1 (A.1.5)

AeNg*™ AeNp*"
The optimality conditions are achieved by equating the derivative of Equation A.1 w.r.t.

P(A) to 0. Hence, we get

1
P(A) = wo(AD+ XS 1, r 91, Al
( ) Z(AT7A67IJ’T7IJ/C) eXPp (Za ’ ( u + U) + Z “*“(’uu +NU)> ( 6>

U,V u,v
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where Z(A", A, u", u®) = exp(l — ) is a partition function. De Bie [2011b] sug-
gested that the choice of partition function is such to ensure the normalization con-
straint A.1.4. Similarly, here the partition function is also found to be the product of
individual partition function represented by unique pair u and v, i.e., Z(A", A, u", p¢) =
[Tuw 2N XS, iy 15). Therefore, Equation A.1.6 now becomes

1 1
P(A) = Al 4 AT . ) Al
(&) =TT g3y S ot 2™ e i 45) (ALT)

u,v

This perfectly aligns with the proposition made by De Bie [2011b], as here also P(A)
comes out to be the product of an exponential family distribution. Given the domain
of @y, the partition function is calculated as Z(A7, Ag, gy, p15) = >, o, €XP(Gun( A, +

X0+ Lo, (4, +415)) which results in Z(], XS, i, ) = 12200 til)) el thag

Al 4+ XS < 0. Finally, from Equations A.1.7 we get

[1—exp (A, + A))]

. eXp )\Z + )\1(;) Qv . eXp /JLZ + M,lc) 1au,’u
T —oxp O, +3¢) (L —exp (i )] P e T ) (b + 1)

Pu,v (au,fu> -

A.2 Proof of Theorem 3.1 (Claim 2)

The Lagrangian of Equations 3.10-3.12 is given as

Q(A) :
L= Qayion (B3 )+ (121 - Q) X s )+ (1- L @)
A A u,vEW A
(A.2.8)
Thus, upon taking the derivative of L w.r.t. @, such that P'(A) = Q(A) at g_é) = 0.
Then, we get

= P'(A R (A.2.9)

u,veW

where Z' = exp (1 — py) where Z' is a new partition function. Now, using P(A) as given
in second part of Theorem 3.1, Equation A.2.9 becomes

1 a 1 B RU;” a 1auv
P'(A) = > exp (Ag)* - H RS )Ruﬁg;vSu,v’ (A.2.10)

u,veW

Let, R, , = R-exp(Ag), hence Equation A.2.10 is further bifurcated as
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Ruv / auv 1a1v
= 1] le_ Ml—S )[R Syl II Puolaun) (A.2.11)

u,veW —~u,veEW

Now, for partition function Z’, we know that ), P'(A) = 1 and also a,, € Ny. Thus,

! I_Ru,v / Ay v 1au,v _ 1_Ru,v l_R;,u(l_SU,U)
A Zau,veNo 17Ru,v(175u,v)[RU,v] Sup” = 1—Ru,v(1—Su,v) 1-R;, ,

Now, putting in Equation A.2.11, we get

PA) = [ e et [ o sl
u,veW 1- R;“)(l - Su,v) 7 7 —u,veW 1- Ru’v(l - Su,v) , ’
1-R
Hence, we can say P'(A) = H T R;,v(lu—’vsu,v) (R )" Silt%w

u,veV
Ry, exp(Ag), if (u,v) e W
where R, , = (A1) (t,0)

Ry, otherwise

Note: The Ay can be found using the bi-section method. [Boyd and Vandenberghe,
2004]. [ |
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Appendix B

Proofs from Chapter 5
B.1 Proof of Theorem 5.1

The proof follows the theorem given in Janson [2018]. However, the author considered the
geometric distribution of type P(X; = k) = p;(1 — p;)¥~!, where k = 1,2,.... Whereas,
we require the distribution of type P(Y; = k) = p;(1 — p;)¥, where k = 0,1,2,.... Hence,
on the same principles the Theorem 5.1 is derived.

Let X4, X5, ... X,, be nindependent geometric random variables with possibly different

distributions: X; ~ Ge(p;) with 0 < p; < 1 (probability of success), i.e.,

P(X; = k) = p;(1 — p:)*, wherek =0,1,2,... (B.1.1)

Let X = 3" | X;, then to estimate the upper bound of tail probability P(X > x), we
define

n

p=BIX] = Y B = ) Lo Py [Z l] o, (B.12)

i=1 Pi i=1

"1
=  ptn= Z;, (B.1.3)

and,

P« = min p; (B.1.4)

We also use the moment generating function for geometric distribution given as

B[] =S et'P(X; = k)= —P2° i< —In(1—p). B.1.5
(€] Z (Xi=b) = T—aq =7 (1-p) (B.1.5)

Now, using the Markov’s Inequality we get the upper bound as

P(X > Ap) < e ™ME [¢Y], fort > 0 andA > 1. (B.1.6)
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Following Equation B.1.5

E [e¥] = —e_te_ 1p+ - (B.1.7)

Now, if 0 <t < p;, then 0 < p; —t < et — 1+ p;. Thus,

—t

i “'p; £\~
E [Gtxi} — te p < cr — et (]_ — —) . (B18)
et —=1+4+p ~ pi—t pi

now, extending Equation B.1.8, if 0 < t < p, = min; p;, then

n n ¢ —1
E[eX] =[E[eX] < |]e™ (1 - —) . (B.1.9)
e =Te 0] <11 (1
Now, substituting Equation B.1.9 in Equation B.1.6, we get
n ¢ —1
P(X > M) <e ™ e (1 - —> (B.1.10)
. bi
i=1
. t
= P(X > Apn) < exp <—t)\u—nt—|—z-1n (1——)) . (B.1.11)
° pi
i=1

We note that  — —In(1 — ) is convex on (0,1) and 0 for z = 0, then
—In(l—2) < —fln(l—y), 0<z<y<l
)
We know that 0 < % <land 0<t<p,, thus0< 1%‘ < pi* < 1, which suggests

t N t
~In (1—-) < Dy (1——). (B.1.12)

Now, substituting Equation B.1.12 in Equation B.1.11, we get

P(X > M) < exp (—t)\,u —nt —In (1 - p%) z": %) . (B.1.13)
Further, using Equation B.1.3, we get o
P(X > M) < exp (—w it = po(pi+n)In (1 - pi)) . (B.1.14)
Finally, using ¢ = up. (}\/);2), which is optimal for Equation B.1.14. Thus, we get
PO ) < oxp (0= 1) = Gt ) (S5 )). (B.1.15
|
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Appendix C

Results from Chapter 6
C.1 Results from Section 6.3.3

Table C.1. Estimation results of 8 different multiple regression models for the dataset of all
airlines combined (Figure 6.8). The p-values of each coefficient are shown in the parenthesis.

The values are highlighted in bold if p-value is significant, i.e., < 0.001.

Var M%p.s M.»iAD,S MZp a MAD,A Mgy s MgI,S Mg a Mé‘[,A
-0.2405 -1.0239 -0.2781 -1.2417 -0.4509 -1.1642 -0.5661 -1.2235
X (0.0869)  (0.0000)  (0.0578) (0.0000)  (0.0010) (0.0000) (0.0001) (0.0000)
_ 0.0279 0.0267 0.0280 0.0276 0.0275 0.0262 0.0273 0.0267
b (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.9973 0.9982 0.9973 0.9985 0.9976 0.9969 0.9978 0.9970
Qos (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
ds 6 0.3707 0.3702 0.3706 0.3706 0.3695 0.3676 0.3697 0.3685
’ (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.2396 0.2432 0.2395 0.2419 0.2399 0.2375 0.2395 0.2378
de.7 (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
dr s 0.1260 0.1274 0.1259 0.1267 0.1257 0.1234 0.1254 0.1239
’ (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
de.o 0.0667 0.0679 0.0666 0.0677 0.0668 0.0666 0.0667 0.0665
’ (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.0029 0.0028 0.0029 0.0028 0.0029 0.0021 0.0030 0.0022
do.10 (0.0922)  (0.0967)  (0.0898)  (0.0982)  (0.0854)  (0.2084)  (0.0794)  (0.2063)
) 0.0017 0.0015 0.0017 0.0015 0.0016 0.0017 0.0016 0.0017
dist (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
-0.1085 -0.3242 -0.1150 -0.3708 -0.1644 -0.1257 -0.1919 -0.1274
it (0.4980)  (0.0429)  (0.4731)  (0.0211)  (0.3067)  (0.4265)  (0.2343)  (0.4208)
0.5607 0.6365 0.5728 0.6713 0.6785 0.4504 0.7236 0.4611
OFFo (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
oEPp 0.8381 0.9044 0.8487 0.9503 0.9600 0.7335 1.0053 0.7492

(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
2.4080  2.7605  2.4204  2.8347  2.3203  2.5775  2.3214  2.5613
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

R-squared 0.997
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Table C.2. Estimation results of 8 different multiple regression models (Figure 6.9) for the
dataset of only American airline’s flights (number of observations is 4148). The p-values of
each coefficient are shown in the parenthesis. The values are highlighted in bold if p-value is

significant, i.e., < 0.001.

Var Mip s Mjam,s MZp A MziAD,A Mg s Mé[,s Mgy a Mg'I,A
0.6465 0.6368 0.7075 0.8995 0.8145 2.2629 1.0033 5.3594
X (0.1516)  (0.0022)  (0.1518) (0.0004)  (0.0037) (0.0001)  (0.0018) (0.0000)
5 -0.0123 -0.0096 -0.0124 -0.0107 -0.0116 -0.0092 -0.0110 -0.0067
(0.1053)  (0.2098)  (0.1034)  (0.1613)  (0.1280)  (0.2304)  (0.1494)  (0.3776)
1.0160 1.0159 1.0159 1.0156 1.0151 1.0156 1.0147 1.0139
@os (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.1731 0.1642 0.1734 0.1638 0.1782 0.1749 0.1753 0.1698
9.6 (0.0020)  (0.0033)  (0.0019)  (0.0034)  (0.0014)  (0.0017)  (0.0017)  (0.0022)
0.1920 0.1830 0.1915 0.1830 0.1887 0.1901 0.1882 0.1903
de.7 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
0.0705 0.0668 0.0707 0.0662 0.0708 0.0683 0.0692 0.0606
a8 (0.0531)  (0.0668)  (0.0526)  (0.0690)  (0.0520)  (0.0606)  (0.0574)  (0.0939)
0.0107 0.0058 0.0111 0.0049 0.0111 0.0076 0.0116 0.0007
98,9 (0.6226)  (0.7905)  (0.6094)  (0.8230)  (0.6096)  (0.7257)  (0.5956)  (0.9727)
-0.0038 -0.0040 -0.0037 -0.0038 -0.0040 -0.0036 -0.0041 -0.0037
.10 (0.2264)  (0.2022)  (0.2289)  (0.2235)  (0.1978)  (0.2487)  (0.1884)  (0.2335)
) -0.0001 0.0000 0.0000 0.0001 0.0001 -0.0001 0.0001 0.0001
dist (0.9179)  (0.9540)  (0.9434)  (0.8689)  (0.9056)  (0.9340)  (0.8327)  (0.8205)
HHT -2.8215 -2.8024 -2.8176 -2.7701 -2.6664 -2.6320 -2.6174 -2.3039
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
-0.3015 -0.2686 -0.3132 -0.2818 -0.5788 -0.1558 -0.6785 -0.1549
OFFo (0.2338)  (0.2746)  (0.2201)  (0.2517)  (0.0359)  (0.5257)  (0.0181)  (0.5249)
0EPp 1.0312 1.1042 1.0220 1.0671 0.7346 1.2138 0.6407 1.2070

(0.0000)  (0.0000) (0.0000) (0.0000) (0.0041) (0.0000) (0.0166) (0.0000)
3.4118  3.5584  3.3746  3.4058  3.8383  3.5855  3.8673  3.3091
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

R-squared 0.997

170



C.1. Results from Section 6.3.3

Table C.3. Estimation results of 8 different multiple regression models (Figure 6.10) for the

dataset of only United airline’s flights (number of observations is 2563). The p-values of each co-

efficient are shown in the parenthesis. The values are highlighted in bold if p-value is significant,

i.e., < 0.001.
Var M%p.s M.»iAD,S MZp a MAD,A Mg s MéI,S Mg a MéI,A

-0.7151 -0.8339 -0.5860 -0.9995 -1.1606 1.5340 -1.4077 1.6129

X (0.3552)  (0.0349)  (0.4670)  (0.0277)  (0.0100)  (0.1358)  (0.0037)  (0.1983)

5 0.0205 0.0205 0.0205 0.0210 0.0217 0.0210 0.0219 0.0208

(0.0111)  (0.0111) (0.01110)  (0.0094)  (0.0071)  (0.0093)  (0.0068)  (0.0100)

0.9910 0.9903 0.9910 0.9906 0.9916 0.9910 0.9921 0.9911

Qos (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ds 6 0.4864 0.4868 0.4861 0.4877 0.4839 0.4848 0.4827 0.4863

’ (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.2448 0.2469 0.2446 0.2466 0.2428 0.2480 0.2422 0.2460

de.7 (0.0000)  (0.0000) (0.0001) (0.0000) (0.0001) (0.0000) (0.0001) (0.0000)

-0.0182 -0.0177 -0.0177 -0.0178 -0.0134 -0.0185 -0.0150 -0.0180

a8 (0.6848)  (0.6922)  (0.6923)  (0.6901)  (0.7645)  (0.6793)  (0.7376)  (0.6867)

0.0182 0.0194 0.0183 0.0193 0.0183 0.0175 0.0177 0.0179

98,9 (0.4799)  (0.4490)  (0.4759)  (0.4524)  (0.4769)  (0.4956)  (0.4894)  (0.4869)

-0.0018 -0.0021 -0.0018 -0.0020 -0.0018 -0.0019 -0.0018 -0.0018

do.10 (0.6302)  (0.5812)  (0.6315)  (0.5977)  (0.6301)  (0.6179)  (0.6245)  (0.6393)

) 0.0017 0.0018 0.0017 0.0017 0.0016 0.0017 0.0015 0.0017

dist (0.0114)  (0.0082)  (0.0119)  (0.0097)  (0.0154)  (0.0126)  (0.0204)  (0.0130)

HHI 1.6094 1.4502 1.6085 1.4208 1.3682 1.7061 1.3244 1.7062

(0.0001)  (0.0007) (0.0001) (0.0009) (0.0014) (0.0001) (0.0021) (0.0001)

0.1800 0.1112 0.1718 0.1075 0.3361 0.1719 0.3977 0.1577

obFo (0.5407)  (0.6979)  (0.5613)  (0.7076)  (0.2603)  (0.5517)  (0.1879)  (0.5843)

oEPp 0.0809 0.0252 0.0664 0.0253 0.2304 0.0293 0.2837 0.0227

(0.7807)  (0.9284)  (0.8193)  (0.9282)  (0.4316)  (0.9168)  (0.3371)  (0.9356)

6.8330 6.7659 6.7282 6.8717 6.7865 6.1265 6.8682 6.1151

" (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
R-squared 0.998
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Table C.4. Estimation results of 8 different multiple regression models (Figure 6.11) for the
dataset of only Delta airline’s flights (number of observations is 2223). The p-values of each co-

efficient are shown in the parenthesis. The values are highlighted in bold if p-value is significant,

i.e., < 0.001.

Var Mip s Mjam,s MZp A MziAD,A Mg s Mé[,s Mgy a Mg'I,A
-0.4507 -0.0986 -0.5918 -0.1986 -0.8739 -1.9772 -1.0494 -1.6932
X (0.3486)  (0.7934)  (0.2423)  (0.6495)  (0.0424) (0.0004)  (0.0224)  (0.0155)
5 0.0355 0.0360 0.0354 0.0359 0.0349 0.0367 0.0348 0.0364
(0.0021)  (0.0018)  (0.0021)  (0.0018)  (0.0024)  (0.0014)  (0.0024)  (0.0015)
0.9255 0.9254 0.9253 0.9254 0.9265 0.9247 0.9266 0.9254
@os (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
ds 6 0.6768 0.6772 0.6767 0.6771 0.6785 0.6838 0.6783 0.6820
’ (0.0000)  (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.4347 0.4353 0.4347 0.4355 0.4329 0.4391 0.4326 0.4360
de.7 (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.4408 0.4417 0.4412 0.4417 0.4448 0.4407 0.4441 0.4403
a8 (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
deo 0.1966 0.1963 0.1963 0.1961 0.1957 0.1933 0.1953 0.1932
’ (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
-0.0081 -0.0082 -0.0081 -0.0082 -0.0081 -0.0085 -0.0081 -0.0085
9,10 (0.0376)  (0.0349)  (0.0368)  (0.0347)  (0.0365)  (0.0271)  (0.0373)  (0.0289)
) 0.0093 0.0093 0.0093 0.0093 0.0092 0.0093 0.0091 0.0093
dist (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1.5126 1.6037 1.4818 1.5735 1.3054 1.5174 1.2603 1.5461
it (0.0013)  (0.0008)  (0.0016) (0.0008)  (0.0064) (0.0008)  (0.0085) (0.0006)
0.2593 0.2119 0.2765 0.2112 0.3886 0.0041 0.4315 0.0522
OFFo (0.2967)  (0.3868)  (0.2679)  (0.3877)  (0.1327)  (0.9871)  (0.0990)  (0.8366)
0EPp 1.2798 1.2214 1.3006 1.2232 1.4102 0.9712 1.4609 1.0548

(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0002) (0.0000) (0.0001)
4.6264  4.3317  4.7371  4.4089  4.6654  5.0210  4.7140  4.8304
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

R-squared 0.997
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Table C.5. Estimation results of 8 different multiple regression models (Figure 6.12) for the
dataset of only Low-Cost Carrier’s flights (number of observations is 3817). The p-values of
each coefficient are shown in the parenthesis. The values are highlighted in bold if p-value is

significant, i.e., < 0.001.

Var M%p.s M.»iAD,S MZp a MAD,A Mg s MéI,S Mg a MéI,A
01601 0.2411  -0.1153 04767  -0.7702  0.7462  -0.8798  1.9709
X (0.5129)  (0.2573)  (0.6542)  (0.0602) (0.0009)  (0.1230) (0.0003)  (0.0011)
- 0.0010 00013 00011 00012  -0.0001 00018  -0.0008  0.0011
(0.8493)  (0.8050)  (0.8419)  (0.8251)  (0.9868)  (0.7328)  (0.8811)  (0.8324)
1.0246 1.0241 1.0246 1.0237 1.0254 1.0240 1.0256 1.0230
Qos (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
ds 6 0.3277 0.3291 0.3279 0.3301 0.3306 0.3285 0.3316 0.3287
’ (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.2047 0.2047 0.2048 0.2051 0.2019 0.2076 0.1997 0.2100
de.7 (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
. 01087 01087  0.1088 0108 01056  0.1099  0.1052  0.1122
’ (0.0011)  (0.0011)  (0.0011)  (0.0011)  (0.0015) (0.0010)  (0.0016) (0.0008)
0.0245 00245 00246 00245 00244 00233 00246  0.0233
9.9 (0.2180)  (0.2183)  (02177)  (0.2176)  (0.2189)  (0.2431)  (0.2168)  (0.2421)
-0.0006 -0.0009 -0.0006 -0.0010 -0.0003 -0.0007 -0.0003 -0.0006
do,10 (0.8538)  (0.7802)  (0.8396)  (0.7505)  (0.9303)  (0.8183)  (0.9323)  (0.8382)
, 0.0008  -0.0007  -0.0008  -0.0007  -0.0009  -0.0007  -0.0009  -0.0006
dist (0.2114)  (0.2568)  (0.2103)  (0.2964)  (0.1583)  (0.2457)  (0.1452)  (0.3117)
05795 -0.4726  -0.5645  -04245  -0.6462  -0.4886  -0.6616  -0.3845
it (0.0797)  (0.1467)  (0.0882)  (0.1935)  (0.0456)  (0.1301)  (0.0408)  (0.2359)
0.2644 01907 02563 0517 05448 02288 05721 0.2148
obFo (0.1409)  (0.2785)  (0.1570)  (0.3922)  (0.0055)  (0.1840)  (0.0036)  (0.2120)
B 02723 -0.3387  -0.2806  -0.3763 00049  -0.3022  0.0347  -0.3075

(0.1246)  (0.0497)  (0.1165)  (0.0307)  (0.9796)  (0.0755)  (0.8584)  (0.0701)
2.8112  2.6096  2.7801  2.5180  2.6758  2.6562  2.6893  2.5629
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

R-squared 0.998
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