
Interpretable multiclass classification by MDL-based rule lists

Hugo M. Proençaa,∗, Matthijs van Leeuwena

aLIACS, Leiden University, The Netherlands

Abstract

Interpretable classifiers have recently witnessed an increase in attention from

the data mining community because they are inherently easier to understand

and explain than their more complex counterparts. Examples of interpretable

classification models include decision trees, rule sets, and rule lists. Learning

such models often involves optimizing hyperparameters, which typically requires

substantial amounts of data and may result in relatively large models.

In this paper, we consider the problem of learning compact yet accurate proba-

bilistic rule lists for multiclass classification. Specifically, we propose a novel

formalization based on probabilistic rule lists and the minimum description

length (MDL) principle. This results in virtually parameter-free model selec-

tion that naturally allows to trade-off model complexity with goodness of fit,

by which overfitting and the need for hyperparameter tuning are effectively

avoided. Finally, we introduce the Classy algorithm, which greedily finds rule

lists according to the proposed criterion.

We empirically demonstrate that Classy selects small probabilistic rule lists

that outperform state-of-the-art classifiers when it comes to the combination of

predictive performance and interpretability. We show that Classy is insensitive

to its only parameter, i.e., the candidate set, and that compression on the train-

ing set correlates with classification performance, validating our MDL-based

selection criterion.

Keywords: Rule lists; Minimum Description Length principle; Interpretable

∗Corresponding author
Email addresses: h.manuel.proenca@liacs.leidenuniv.nl (Hugo M. Proença),

m.van.leeuwen@liacs.leidenuniv.nl (Matthijs van Leeuwen)

models; Classification

1. Introduction

Interpretable machine learning has recently witnessed a strong increase in at-

tention [12], both within and outside the scientific community, driven by the

increased use of machine learning in industry and society. This is especially

true for applications domains where decision making is crucial and requires

transparency, such as in health care [28, 27] and societal problems [26, 47].

While it is of interest to investigate how existing ‘black-box’ machine learning

models can be made transparent [36], the trend towards interpretability also

offers opportunities for data mining, or Knowledge Discovery from Data (KDD),

as this field traditionally has a stronger emphasis on intelligibility.

In recent years several interpretable approaches have been proposed for su-

pervised learning tasks, such as classification and regression. Those include

approaches based on prototype vector machines [33], generalized additive mod-

els [30], decisions sets [25, 44], and rule lists [28, 46]. Restricting our focus

to classification, we make two important observations. First, we observe that

state-of-the-art algorithms [25, 44, 28, 46, 3] are designed for binary classifi-

cation; no interpretable methods specifically aimed at multiclass classification

have been proposed, in spite of being a common scenario in practice. Multi-

class classification is more challenging because of 1) the increased complexity in

model search, due to the uncertain consequences of favouring one class over the

others, and 2) the lack of possibilities to prune the search such as commonly

used when finding, e.g., decision lists [3] or Bayesian rule lists [46] for binary

classification. Our second observation is that although recent methods based

on rules [28, 46] and decision sets [25, 44] have been shown to be effective, they

tend to have 1) a fair number of hyperparameters that need to be fine-tuned,

and 2) limited scalability. Especially the need for hyperparameter tuning can

be problematic in practice, as it requires significant amounts of computation

power and data (i.e., not all data can be used for training, as a substantial part

2

has to be reserved for validation).

To address these shortcomings, we introduce a novel approach to finding inter-

pretable, probabilistic multiclass classifiers that requires very few hyperparame-

ters and results in compact yet accurate classifiers. In particular, we will show

that our method naturally provides a desirable trade-off between model com-

plexity and classification performance without the need for parameter tuning,

which makes the application of our approach very straightforward and the re-

sulting models both adequate classifiers and easy to interpret.

We will use probabilistic rule lists, as both the antecedent of a rule (i.e., a pat-

tern) and its consequent (i.e., a probability distribution) are interpretable [28].

Using a probabilistic model has the additional advantage that one cannot only

provide a crisp prediction, but also make a statement about the (un)certainty

of that prediction.

We show that, given a set of ordered patterns, we can trivially estimate the cor-

responding consequent probability distributions from the data. The remaining

question, then, is how to select a set of patterns that together define a proba-

bilistic rule list that is accurate yet does not overfit. This is not only important

to ensure generalizability beyond the observed data, but also to keep the mod-

els as compact as possible: larger models are harder to interpret by a human

analyst [21]. Recent optimization [25] and Bayesian [46] approaches heavily rely

on hyperparameters to achieve this, but those need to be tuned by the analyst

and we specifically aim to avoid this.

The solution that we propose is based on the minimum description length (MDL)

principle [38, 18], which has been successfully used to select small sets of patterns

that summarize the data in the context of exploratory data mining [42, 41, 9].

The MDL principle can be paraphrased as “induction by compression” and

roughly states that the best model is the one that best compresses the data.

Advantages of the MDL principle include that it has solid theoretical founda-

tions, avoids the need for hyperparameters, and automatically protects against

overfitting by balancing model complexity with goodness of fit.

Our first main contribution is the formalization of the problem of selecting the

3

optimal probabilistic rule list using the minimum description length principle.

Although the MDL principle has been used for pattern-based classification be-

fore [42], we are the first to introduce a MDL-based problem formulation aimed

at selecting rule lists for multiclass classification. Technically, our approach

includes the use of the prequential plug-in code, a form of refined MDL that

has only been used once in pattern-based modelling [9]. One advantage of our

approach is that the resulting problem formulation is completely parameter-free.

Our second main contribution is Classy, a heuristic algorithm for finding good

probabilistic rule lists. Inspired by the Krimp algorithm [42], we select a good set

of rules from a set of candidate patterns. We empirically demonstrate, by means

of a variety of experiments, that Classy outperforms RIPPER, C5.0, CART,

and Scalable Bayesian Rule Lists (SBRL) [46] when it comes to the combination

of classification performance and interpretability, in particular when taking into

account that it has much fewer hyperparameters.

Rule antecedent consequent usage

1 If {backbone = no} then Pr(invertebr.) = 0.55 10

Pr(bug) = 0.45 8

2 else if {breathes = no} then Pr(fish) = 0.93 13

Pr(reptile) = 0.07 1

3 else if {feathers = yes} then Pr(bird) = 1.00 20

4 else if {milk = no} then Pr(reptile) = 0.50 4

Pr(amphibian) = 0.50 4

∅ else else then Pr(mammal) = 1.00 41

Figure 1: Example of a Probabilistic Rule List (PRL) obtained by Classy on the zoo dataset,

without the need for any parameter tuning. Test accuracy: 87%. The dataset contains

7 classes, 101 examples, and 35 binary variables. Usage refers to the number of examples

covered by a certain rule and class label. Note that we did not apply Laplace smoothing here

for clarity of presentation; Equation (5) defines the actual probability estimates.

To illustrate this, Figure 1 shows an example rule list that was found using

4

Classy on the zoo1 dataset, without any parameter tuning. Although it is not

perfectly accurate, its accuracy (87%) is pretty good considering that there are

seven classes and the list only has four rules. Moreover, it provides probabilistic

predictions and is very easy to interpret.

The remainder of this paper is organized as follows. First, Section 2 discusses

related work, after which we introduce probabilistic rule lists and MDL for such

lists in Sections 3 and 4, respectively. Section 5 presents the Classy algorithm.

After that we continue with experiments in Section 6 and conclude in Section 7.

2. Related work

We start by comparing the most important features of our algorithm to those

of state-of-the-art algorithms, and then provide a brief overview of the most

relevant literature, grouped into three topics: 1) rule-based models; 2) similar

approaches in pattern mining; and 3) MDL-based data mining. For an in-depth

overview of interpretable machine learning, we refer to Molnar [32].

Table 1 compares the most important features of our proposed approach, called

Classy, to those of other rule-based classifiers, which will be described in the

next subsections. Classical methods, such as CART [7], C4.5 [35] and RIP-

PER [10], lack a global optimisation criterion and thus rely on heuristics and

hyperparameters to deal with overfitting. Fuzzy rule-based models [2, 23], here

represented by FURIA [20] use rule sets instead of rule lists and lack proba-

bilistic predictions. Recent Bayesian methods [44, 25, 44] are limited to small

numbers of candidate rules and binary classification, limiting their usability, and

are here represented by SBRL [46] (which is representative for all of them). A re-

cent approach also using MDL and probabilistic rule lists (MRL) [4] is aimed at

describing rather than classifying and cannot deal with multiclass problems or a

large number of candidates. Interpretable decision sets (IDS) [25] and certifiable

optimal rules (CORELS) [3] use similar rules but do not provide probabilistic

1http://archive.ics.uci.edu/ml/datasets/Zoo

5

http://archive.ics.uci.edu/ml/datasets/Zoo

Method Multiclass Probabilistic Criterion �1K cand No tuning

Classy 4 4 4 4 4

IDS[25] 4 - 4 4 -

CORELS [3] - - 4 - -

MRL[4] - 4 4 - 4

SBRL[46] - 4 4 - -

FURIA[20] 4 - - 4 -

Others 4 4 - 4 -

Table 1: Our approach, Classy, does Multiclass classification, makes Probabilistic predictions,

has a global optimisation Criterion, can handle large numbers of cand idate rules, and does

not need hyperparameter tuning. “Others” denotes classical algorithms such as CART, CBA,

C4.5, and RIPPER.

models or predictions.

Note that methods that explain black-box models [36, 37], typically denoted by

the term explainable machine learning, also aim to make the decisions of clas-

sifiers interpretable. However, they mostly focus on sample-wise (local inter-

pretation) explanations, while we focus on explaining the whole dataset (global

interpretation) by means of a single model. As these goals lead to clearly differ-

ent problem formulations and thus different results, it would not be meaningful

to empirically compare our approach to explainable machine learning methods.

2.1. Rule-based models

Rule lists have long been successfully applied for classification; RIPPER is one

of the best known algorithms [10]. Similarly, decision trees, which can easily

be transformed to rule lists, have been used extensively; CART [7] and C4.5

[35] are probably the most best-known representatives. These early approaches

represent highly greedy algorithms that use heuristic methods and pruning to

find the ‘best’ models.

6

Fuzzy rules have been extensively studied in the context of classification and

interpretability. Several approaches to construct fuzzy rule-based models have

been proposed, such as transforming the resulting model of another algorithm

into a fuzzy model and posteriorly optimizing it [20], using genetic algorithms

to combine pre-mined fuzzy association rules [2], and doing a multiobjective

search over accuracy and comprehensibility to find Pareto-optimal solutions

[23]. Although these approaches are related, the rules are aggregated in a rule

set, i.e., a set of independent if rules that can be activated at the same time

to classify one instance, contrary to one rule at the time for rules lists. This

makes the comparison between both types of models difficult. Also, these fuzzy

rule-based models do not provide probabilistic predictions.

Over the past years, rule learning methods that go beyond greedy approaches

have been developed, i.e., by means of probabilistic logic programming for inde-

pendent rule-like models [5], greedy optimization of submodular problem formu-

lation or simulated annealing in the case of decision sets [25, 44], by Monte-Carlo

search for Bayesian rule lists [28, 46], and through branch-and-bound with tight

bounds for decision lists [3]. Even though in theory these approaches could be

easily extended to the multiclass scenario, in practice their algorithms do not

scale with the higher dimensionality that arises from the search in multiclass

space with an optimality criteria. Also, only Bayesian rule lists [28, 46] and

Bayesian decision sets [44] provide probabilistic predictions.

All previously mentioned algorithms share some similarities with Classy. In

particular Bayesian rule lists [28, 46] are closely related as they use the same

type of models, albeit with a different formulation, based on Bayesian statis-

tics. This difference leads to different types of priors—for example, we use the

universal code of integers [39]—and therefore to different results; we will empir-

ically compare the two approaches. Certifiable optimal rules [3] have a similar

rule structure but do not provide probabilistic models or predictions. Decision

sets [25] share the use of rules, but as opposed to (ordered) lists they consider

(unordered) sets of rules.

7

2.2. Pattern mining

Association rule mining [1], a form of pattern mining, is concerned with mining

relationships between itemsets and a target item, e.g., a class. One of its key

problems is that it suffers from the infamous pattern explosion, i.e., it tends to

give enormous amounts of rules. Several classifiers based on association rule

mining have been proposed. Best-known are probably CBA [31] and CMAR

[29], but they tend to lack interpretability because they use large numbers of

rules. Ensembles of association rules, such as Harmony [43] or classifiers based

on emergent patterns [16], can increase classification performance when com-

pared to the previous methods, however they can only offer local interpretations.

Subgroup discovery and similar approaches [24] are all relevant too, but they

focus on finding descriptive patterns and not on finding global classification

models. Approaches to supervised pattern mining based on significance testing

[45] do not focus on finding global models either.

A last class of related methods is that of supervised pattern set mining [49]. The

key difference is that these methods do not automatically trade-off model com-

plexity and classification accuracy, requiring the analyst to choose the number

of patterns k in advance.

2.3. MDL-based data mining

In data mining, the MDL principle has been used to summarize different types

of data, e.g., transaction data [42, 9], and two-view data [40].

In prediction it has been previously used to deal with overfitting [10, 35] and in

the selection of the best compressing pattern [48].

RIPPER and C4.5 [10, 35] use the MDL principles in their post-processing

phase as a criteria for pruning, while we use it in a holistic way for model

selection. Although Krimp has been used for classification [42], it was not

designed for this: it outputs large pattern sets, one for each class, and does not

give probabilistic predictions. DiffNorm [9] creates models for combinations of

classes and also uses the prequential plug-in code, but was designed for data

summarization. Aoga et al. recently also proposed to use probabilistic rule lists

8

and MDL [4], but 1) we propose a vastly improved encoding, which is tailored

towards prediction (instead of summarization), 2) our solution does multiclass

classification, and 3) our algorithm has better scalability.

3. Multiclass classification with rule lists

In this section we formalize the probabilistic rule list model and show how to

estimate its parameters, i.e., the rule consequent probabilities. The notation

most commonly used throughout this paper is summarized in Table 2.

LetD = (X,Y) = {(x1, y1), (x2, y2), ..., (xn, yn)} be a supervised Boolean dataset,

i.e., a Boolean dataset X with a (multi)class label vector Y . Note that any cat-

egorical dataset can be trivially represented as a Boolean dataset using dummy

variables, hence our methods apply to any categorical dataset as well. Each

example forms a pair (x, y), which consists of an instance of Boolean variables

x and a class label y.

An instance x = (x1, x2, ..., xk) consists of k = |V | binary values, with V the

set of all Boolean variables in X. That is, x is an element of the set of all

possible Boolean vectors of size |V |, i.e, x ∈ X .
= {0, 1}|V |. A pattern a is a

logical conjunction of variable-value assignments over instance space X , e.g.,

a = [x2 = 1 ∧ x3 = 1]. A pattern a occurs in instance x, denoted a v x, iff x

satisfies the predicate defined by pattern a. Thus, in our example, the pattern

occurs in an instance iff x2 = 1 and x3 = 1; the values of the other variables do

not influence the occurrence of this pattern. A pattern is said to have size |a|

equal to the number of conditions it contains; in this case |a| = 2. Each class

label is an element of the set of all classes, i.e., yi ∈ Y, where Y = {1, . . . , |Y|}

and |Y| is the number of classes in the dataset.

We consider the problem of multiclass classification. That is, given training

data D, the goal is to induce a classification model that accurately predicts

class label c ∈ Y for any (possibly unseen) instance x ∈ X .

9

3.1. Probabilistic rule lists

A probabilistic rule list (PRL) R is an ordered list of k rules r1, . . . , rk ending

with a default rule r∅, where each defines a probability distribution over the class

labels. Note that this means that R has |R|+1 rules in total. Each rule consists

of a pair ri = (ai, θθθ(ai)), where a pattern ai is the antecedent and a categorical

distribution (i.e., a generalized Bernoulli distribution) over the class labels θθθ(ai)

is the consequent. Whenever clear from the context we use θθθi as shortcut for

the parameters associated with pattern ai. Each categorical distribution is

parameterized by individual class probabilities θθθi = (θc1i , . . . , θ
c|Y|
i), such that

θ
cj
i > 0,∀i,j and

∑
j θ

cj
i = 1,∀i. That is, rule i is given by

ai → y ∼ Categorical(θθθi). (1)

The default rule r∅, which intuitively corresponds to a rule with the empty set

as antecedent, is associated with a categorical distribution over the class labels

denoted by θθθ∅. An example PRL with |R| = 2 rules is given by:

rule 1 : if a1 v x then y ∼ Categorical(θθθ1)

rule 2 : else if a2 v x then y ∼ Categorical(θθθ2)

default : else y ∼ Categorical(θθθ∅)

(2)

Given a PRL R, an instance x is classified by going through the rule list top-

down, i.e., x is classified according to r∗ = (a∗, θθθ∗), which is defined as the

first rule in the list for which a∗ occurs in x (a∗ v x). If none of the patterns

ai,∀i∈1,...,|R| occurs in a given instance, the classifier automatically falls back to

the default rule r∅. From the pattern a∗ that is activated for a given instance,

the user obtains a corresponding probability distribution θθθ∗ over the class labels

for instance x. In case a crisp prediction is necessary, as for example when

comparing a PRL with other classifiers, we follow the typical approach, which

is to predict the class label that has the highest probability:

ŷ = arg max
c∈Y

θc∗. (3)

10

Note that contrary to decision lists, which only provide an associated class per

rule, probabilistic rule lists provide a distribution over all class labels. This

provides the user with extra information about the classification that is made,

in the form of a probability of seeing each class label for a certain instance. This

is especially relevant in the multiclass scenario where crisp classification implies

a choice between more than two classes.

3.2. Parameter estimation

In the previous section the PRL is assumed to be given, while in practice we want

to learn its parameters from the data. We defer the problem of selecting the

patterns ai to the next section and first describe how to estimate the parameters

of the categorical distributions from data, i.e., how to estimate θθθi, for i ∈

{1, . . . , |R|,∅}, given an (ordered) set of patterns.

We first introduce some notation. The support of a pattern ai is the number of

times that the pattern occurs in (training) data D:

supp(ai) = |{x ⊂ D | ai v x}| (4)

The usage of ai ∈ R is the number of times it is activated in (training) data D.

That is, it is the support of ai minus the instances that were already covered

by other patterns that come before ai in R:

usage(ai | R,D) = |{x ⊂ D | ai v x ∧

∧
∀j<i

aj 6v x

}|
For ease of presentation, we abbreviate usage(ai | R,D) as Uai whenever D and

R are clear from the context.

Next, we introduce class-specific usage as the number of times a pattern is

activated on a training instance with class label c. We define a class-conditioned

dataset as

Dy=c = {(x, y) ⊂ D | y = c},

and class-specific usage as

U (ai,c) = usage(ai | R,Dy=c).

11

Given the usages and class-specific usages, which are easy to compute, it is

straightforward to define a maximum likelihood estimator for Pr(y = c | ai), for

any rule ai and class c. We use a variant that is called a smoothed maximum

likelihood estimator:

θ̂ci =
U (ai,c) + ε

Uai + |Y|ε
. (5)

Unlike the regular maximum likelihood estimator, this smoothed variant—known

as Laplace smoothing—adds a (small) pseudocount ε to each class-specific usage

even when that class has no counts. This avoids zero probabilities for any class

label and corresponds to using a symmetric Dirichlet prior ε for each class [17].

Note that this estimate could be interpreted as the confidence of the nth rule in

a list, accounting for what has been covered by previous rules.

4. MDL for multiclass classification

Having defined our models and parameter estimator, the remaining question

is how to select adequate models. As we are interested in finding compact

yet accurate rule lists that do not overfit, we resort to the minimum description

length (MDL) [38, 18] principle, which can be paraphrased as “induction through

compression”. The problem of selecting a concrete rule list from a large space

of possible rule lists is a point hypothesis selection problem, for which we should

use a two-part code [18].

In contrast to existing pattern-based modeling approaches (e.g., [42, 41]), we

deal with a supervised setting in which the goal is to learn a mapping from

instances to class labels. This implies that we are not looking for structure

within instance data X, but for structure in X that helps to predict Y .

That is, to induce a mapping from instances to class labels, we should consider

the instance data X to be given as ‘input’ to the (classification) model and

only encode the class labels Y . Clearly, the models that we consider are the

probabilistic rule lists that we introduced in the previous section. Then, given

12

the complete space of modelsR, uniquely specified by all ordered sets of patterns

over X , the optimal model is the model R ∈ R that minimizes

L(D,R) = L(Y | X,R) + L(R), (6)

where L(Y | X,R) is the encoded length, in bits2, of the class labels given data

X and model R, and L(R) is the encoded length, in bits, of the model. Equation

(6) represents a trade-off between how well the model fits the data, L(Y | X,R)

and the complexity of that model, L(R). Note that, on a high level, two-part

code in (6) is similar to the one that was recently used in the context of two-view

data [40], but there the goal was summarization rather than classification and

the details of the encodings are very different. The next subsections describe

the two parts of the encoding, together with examples of how to compute the

length of the encodings in practice.

4.1. Model encoding

Following the rule of parsimony associated with the MDL principle [18], the

model encoding should result in larger code lengths for more complex mod-

els. To accomplish this we use only two types of codes for the different model

components, the universal code for integers and the uniform code.

The universal code for integers [39], also called the universal prior for integers,

is given by LN(i) = log k0 + log∗ i, where log∗ i = log i+ log log i+ . . . and k0 ≈

2.865064. This code makes no a priori assumption about the maximum number

i accepted by the model and a small assumption in terms of penalizing larger

numbers, as it grows logarithmically with i and thus slower than the number of

data instances n. This makes it quite different from the Poisson prior typically

used in Bayesian approaches [46]: that prior more strongly penalizes integers

that are further away from the expectation of the distribution, as defined by the

user-chosen parameter. We use LN(n) when we want to penalize the increase of

elements in the model, such as the number of rules or the length of a pattern.

2To obtain lengths in bits, all logarithms in this paper are to the base 2.

13

The uniform code avoids any bias by assigning code words of equal length to

all elements and is therefore used when all elements are equal. E.g., to encode

a variable x from a set of |V | variables: LU (x) = − log 1
|V | = log |V |.

We will now show how to compute the total length of a model, i.e., a probabilistic

rule list R over the variable space V :

L(R) = LN(|R|) +
∑
ai⊂R

L(ai), (7)

where first the number of rules is encoded using the universal code for integers,

and then the individual patterns are encoded. The length of pattern ai is given

by

L(ai) = LN(|ai|) + |ai| log |V | (8)

where the number of conditions in ai is encoded with the universal code for

integers, and then each of its conditions are encoded with a uniform code over

V . Contrary to what is common in existing MDL-based pattern set mining

approaches (e.g., [42, 9]), which are aimed at summarization, we do not use

normalized supports for encoding our patterns. That is, previous work typi-

cally uses codes based on the support of a pattern of size 1 (singleton), e.g.,

a = [x2 = 1], and normalizes this support by the sum of all their supports. Al-

though this works well for summarization, in classification higher support does

not necessarily imply better predictive power; hence we use the uniform code.

In general, without prior knowledge the uniform code represents the best, un-

biased choice [18].

Example 1 (part 1 of 2): We use the example rule list in Figure 1 to show how

to compute the length of the model encoding. The model contains 4 rules plus

a default one, 1 condition per rule, over a dataset with 35 binary variables.

According to Equation (7) the length of the model encoding is:

L(R) = LN(4) +

4∑
i=1

LN(1) + log 35 = 31.12 bits

Note that for the purpose of model selection we are only concerned with the

14

length of the encoding, not in materialised codes, hence the values should not

be rounded to natural numbers.

4.2. Data encoding

For the encoding of the data we use the prequential plug-in code, because it

is asymptotically optimal even without any prior knowledge on the probabili-

ties [18]. Moreover, the prequential plug-in code directly uses and gives us the

smoothed maximum likelihood estimates θci for Pr(y = c | ai), as defined in

Subsection 3.2, which makes it a natural choice.

Intuitively, the idea of the prequential plug-in code is that one starts with a pseu-

docount ε for each possible element, constructs a code using these pseudocounts,

starts encoding/sending/decoding messages one by one, and then updates the

count of each element after sending/receiving each individual message.

We apply this idea to encode the class labels, Y . Ignoring the rule list for a

moment, initially each class label has a pseudocount of ε. Hence, when sending

the first class label, y1, we effectively use a uniform code, i.e., − log ε
|Y|ε . After

that, however, we increase the count of that class label by one. Normalizing the

updated counts results in a new categorical probability distribution—hence a

new code: − log ε+1
|Y|ε+1 . This code is the best possible code given the data seen

so far and is equal to the smoothed maximum likelihood of Eq. (5). Formally,

the plug-in code for encoding the class labels is defined as

Prplug-in(yi = c | Yi−1) ..=
|{y ∈ Yi−1 | y = c}|+ ε∑
k∈Y |{y ∈ Yi−1 | y = k}|+ ε

, (9)

where yi represents the ith class label, Yi−1 = {y1, ..., yi−1} represents the se-

quence of the i − 1 first class labels, and ε is the pseudocount necessary for

Prplug-in(y1 = c | y0) to be valid. Choosing the uniform prior, i.e., ε = 1, is

a common choice for categorical distributions [46], and we will use that value

henceforth.

We now show how the probabilistic rule lists can be used in the encoding of the

class labels. By definition, only one rule is activated for each instance, hence

each rule only activates in a unique part (subset) of the dataset. By realizing

15

that the encoding of an example in a subset only depends on the rule that

formed that subset, the encoding of the dataset can be simplified to the sum

of the encoding of its subsets. We define the part covered by a rule antecedent

ai ∈ R as

Dai = {Xai , Y ai} = {(x, y) ∈ D | ai v x ∧

∧
∀j<i

aj 6v x

}.
Thus it is possible to define the encoding of the whole data as:

L(Y | D,R) =
∑
ai∈R

L(Y ai | Xai , R). (10)

Inserting the prequential plug-in code (9) in (10) we obtain:

L(Y ai | Xai , R) = − log

Uai∏
j=1

Pr
plug-in

(yj | Y aij−1)


= − log

∏c∈Y
∏U(ai,c)−1
j=0 (j + ε)∏U(ai,c)−1

j=0 (j + εC)


= − log

(∏
c∈Y(U (ai,c) − 1 + ε)!/(ε− 1)!

(Uai − 1 + ε|Y|)!/(ε|Y| − 1)!

)

= − log

(∏
c∈Y Γ(U (ai,c) + ε)/Γ(ε)

Γ(Uai + ε|Y|)/Γ(ε|Y|)

)
,

(11)

where Y aij is a sequence of class labels of length j in part Dai , and Uai and

U (ai,c) are the usage and class-specific usage of pattern ai respectively. Further,

Γ is the gamma function, an extension of the factorial to real and complex

numbers that is given by Γ(i) = (i− 1)!.

Even though the code was formulated for sequential data, the order in which

the class labels are transmitted in i.i.d data does not affect the encoded length,

as the probability distribution only depends on the usage of the patterns, not

on the order, as can be seen in the last equation.

Example 1 (part 2 of 2): We continue our example of Figure 1 with the compu-

tation of the length of the data encoding. For this we use ε = 1, as we will also

16

use in our experiments. First, we show how to compute the length of encoding

the part covered by rule 1 using Equation (11):

L(Y a1 | Xa1 , R) = − log

(
Γ(10 + 1)Γ(8 + 1)Γ(1)5

Γ(1)7
· Γ(7)

Γ(18 + 7)

)
= 32.46 bits

We repeat this step (not shown) for the other parts of the dataset, which are

covered by rules 2, 3, 4 and ∅ respectively. Summing the length of all five parts,

following Equation (10), we obtain 110.36 bits for the length of the data encoding

given R, i.e., L(Y | D,R).

Finally, we sum the results obtained for L(Y | D,R) and L(R) (in the first part

of this example), and obtain 141.48 bits for the joint length of the data and

model encoding, as defined by Equation (6).

5. The Classy algorithm

Given our model class—probabilistic rule lists—and its corresponding MDL

formulation, what remains is to develop an algorithm that—given the training

data—finds the best model according to our MDL criterion. To this end, in

this sectio, we present Classy, a greedy search based algorithm that iteratively

finds the best rules to add to a rule list. This section is structured as follows.

First, a brief description of separate-and-conquer greedy search is given. Then

compression gain, i.e., the measure that uses compression to score candidate

rules, is described. After that, the Classy algorithm is defined. Then, it is

explained how individual rules—candidates for the model—are generated from

the data. Finally, we analyse Classy’s time and space complexity.

5.1. Separate-and-conquer greedy search

Greedy search is very commonly used for learning decision trees and rule lists

[35, 10, 15], as well as for pattern-based modelling using the MDL principle

[42, 9, 40]. A few recent approaches use optimization techniques [46], but these

have the limitation that the search space must be strongly reduced, providing

an exact solution to an approximate problem (as opposed to an approximate

solution to an exact problem).

17

Symbol Definition

D Dataset of examples

Da Subset of D where pattern a occurs

Dy=c Subset of D where class label c occurs

D(a,y=c) Subset of D where a and c both occur

n Total number of examples/instances

X Dataset of instances of D (without class labels)

V Set of all Boolean variables in D

|V | Total number of Boolean variables in D

X Set of all possible binary vectors of size |V |

x Instance

x Boolean variable

Y Vector of class labels in D

Y Set of all class labels in D

|Y| Total number of class labels in D

y Class label

R Set of all proabilistic rule lists

R Proabilistic rule list

|R| Number of rules in R (excluding the default rule)

ri ith rule of R

ai Pattern/rule antecedent of ri

|ai| Number of logical conditions in pattern ai

supp(a) Number of instances where a occurs

Uai Usage of ai given R

U (ai,c) Usage of ai where class c also occurs given R

θθθi Vector of probabilities of each class label of ri

θci Probability of the ith rule for class c

Table 2: Table of commonly used notation.

18

Global heuristics, such as evolutionary algorithms, have been extensively applied

to fuzzy rule-based model learning [13], and although they could also be applied

here, we found that the arguments in favor of a local search approach were

stronger: 1) local heuristics have often been successfully applied for pattern-

based modelling using the MDL principle, making it a natural approach to

consider; 2) local heuristics are typically faster than global heuristics, as much

fewer candidates need to be evaluated; 3) global heuristics typically require

substantially more (hyper)parameters that need to be tuned (e.g., population

size, selection and mutation operators, etc.), while local heuristics have very

few.

Given the arguments presented here the algorithm that we propose is based on

greedy search. More specifically, it is a heuristic algorithm that, starting from a

rule list with just a default rule equal to the priors of the class labels in the data,

adds rules according to the well-known separate-and-conquer strategy [15]: 1)

iteratively find and add the rule that gives the largest change in compression; 2)

remove the data covered by that rule; and 3) repeat steps 1-2 until compression

cannot be improved. This implies that we always add rules at the end of the

list, but before the default rule.

5.2. Compression gain

The proposed heuristic is based on the compression gain that is obtained by

adding a rule r = (a,θθθ) to a rule list R, which will be denoted by R⊕r. We will

argue—and demonstrate empirically later—that for the current task it is better

to consider normalized gain rather than the typically used absolute gain. Note

that the gains are defined positive if adding a rule represents a compression

improvement, and negative vice-versa.

Absolute compression gain, denoted ∆L(D,R⊕ r), is defined as the differ-

ence in code length before and after adding a rule r to R. The gain can be

divided in two parts: data gain, ∆L(Y | X,R⊕ r), and model gain, ∆L(R⊕ r).

19

Together this gives

∆L(D,R⊕ r) = L(D,R)− L(D,R⊕ r)

= L(Y | X,R)− L(Y | X,R⊕ r)︸ ︷︷ ︸
∆L(Y |X,R⊕r)

+ L(R)− L(R⊕ r)︸ ︷︷ ︸
∆L(R)

.

(12)

Using Eq. (7) we show absolute gain as:

∆L(R⊕ r) =LN(|R|)− LN(|R|+ 1)

− LN(|a|)− |a| log |V |.
(13)

Note that model gain is always negative, as adding a rule adds additional com-

plexity to the model.

In the case of the data gain it should be noted that adding rule r to R only

activates the part of the data previously covered by the default rule, as new

rules are only added after the previous ones and before the default rule. This

search strategy of adding rules assumes that the previous rules already cover

their subset well, and that improvements only need to be made where no rule is

activated, which corresponds to the region of the dataset covered by the default

rule. Hence, we only need to compute the difference in length of using the

previous default rule ∅ and the combination of the new pattern a ∈ r with the

new default rule ∅′. Using Equation (10) we obtain

∆L(Y | X,R⊕ r) =

L(Y |X,R)︷ ︸︸ ︷
����������∑
ai∈R

L(Y ai | Xai , R) + L(Y ∅ | X∅, R⊕ r) .

−
����������∑
ai∈R

L(Y ai | Xai , R) − L(Y ∅′ | X∅′ , R)− L(Y a | Y a, R⊕ r)︸ ︷︷ ︸
L(Y |X,R⊕r)

(14)

Normalized compression gain, denoted δL(D,X ⊕ r), is defined as the ab-

solute gain normalized by the number of instances that are activated by pattern

20

a ∈ r, which can be obtained by dividing absolute gain by the usage of a:

δL(Y | X,R⊕ r) =
∆L(Y | X,R⊕ r)

Ua
(15)

By normalizing for the number of instances that a rule covers, normalized gain

favors rules that cover fewer instances but provide more accurate predictions

compared to absolute gain. When greedily covering the data, it is essential to

prevent choosing large but moderately accurate rules in an early stage; this is

likely to lead to local optima in the search space, from which it could be hard

to escape. As this is bound to happen when using absolute gain, our hypothesis

is that normalized gain will lead to better rule lists. We will empirically verify

if this is indeed the case.

5.3. Candidate generation

Candidates are probabilistic rules of the form r = (a,θθθ) that are considered for

addition to a rule list for a dataset D. The candidates are generated by first

mining a rule antecedent/pattern a using a standard frequent pattern mining

algorithm, e.g., FP-growth [6], and then finding the corresponding consequent

categorical distribution θθθ given the dataset, i.e., using Equation (5). In prac-

tice these mining algorithms have only two parameters: the minimum support

threshold ms and the maximum length lmax of a pattern. Mining frequent pat-

terns can be done efficiently due to the anti-monotone property of their support,

i.e., given a pattern a and b, if a has less conditions then b, i.e., a ⊂ b, implies

that supp(a) ≥ supp(b). This property is also used to remove strictly redun-

dant rules in Classy. Given all candidates from the frequent pattern mining

algorithm, if the antecedent a is a strict subset of antecedent b, i.e., a ⊂ b,

and they have equal support, supp(a) = supp(b), we say that antecedent b is

redundant and will never be selected. This is a consequence of their encoding,

i.e., Lplug−in(Y a | Xa, R) = Lplug−in(Y b | Xb, R) in the case they are being

considered for the same position, and that the model encoding length of b will

always be larger than a, i.e., L(a) < L(b). From this we can conclude that b

21

will never be preferred over a during model search, as the gain of a will always

be greater.

5.4. Finding good rule lists

We are now ready to introduce Classy, a greedy algorithm for finding good

solutions to the MDL-based multiclass classification problem as formalized in

Section 4. The algorithm, outlined in Algorithm 1, expects as input a (super-

vised) training dataset D and a set of candidate patterns, e.g., a set of frequent

itemsets mined from D, and returns a probabilistic rule list.

The first step of our algorithm, line 1 is to remove the strictly redundant patterns

as mentioned in Section 5.3. After that, in line 2 we initialize the rule list with

the default rule, which acts as the baseline model to start from. Then, while

there is a rule that improves compression (Ln 7), we keep iterating over three

steps: 1) we select the best rule to add (Ln 4)—we here use normalized gain

for ease of presentation, but this can be trivially replaced by absolute gain; 2)

we add it to the rule list (Ln 5); and 3) we update the usage, and gain of the

candidate list (Ln 6). To update the usage of a candidate it is necessary to

remove from its usage the instances that it has in common with the previous

added rule, and then the gain of adding the candidate can be updated. When

there is no rule that improves compression (negative gain) the while loop stops

and the rule list is returned.

5.5. Complexity

In this section we analyze the time and space complexity of Classy. In terms of

time complexity, Classy can be divided in two parts: 1) an initialization step,

and 2) an iterative loop where one rule is added to a PRL in each iteration.

The time complexity of the initialization step is dominated by sorting the can-

didates (ascending by length) obtained after running the frequent pattern min-

ing algorithm, and the computation of their instance ids, i.e., the indexes of

the instances where each candidate is present. Sorting all candidates takes

O(|Cands| log |Cands|) time. To compute the instance ids of the candidates,

22

Algorithm 1 The Classy algorithm

Input: Dataset D, candidate set Cands

Output: Multiclass probabilistic rule list R

1: Cands← RemoveRedundancy(Cands)

2: R← [∅]

3: repeat

4: r ← arg max∀r′∈Cands : δL(D,R⊕ r′)

5: R← R⊕ r

6: UpdateCandidates(D,R,Cands)

7: until δL(D,R⊕ r′) ≤ 0,∀r′ ∈ Cands

8: return R

Classy first computes the presence of each singleton condition, i.e., xi = 1 is

tested for each variable, in each instance, and then stores them as a bitset in

a hash table. As this is done for the whole dataset, it takes O(|D||V |) time.

Then, for candidates of size equal or greater than two and given a sorted ar-

ray of candidates, it sequentially computes the instance ids of each candidate

a based on its decomposition in two candidates of one less condition, i.e., it

computes the ids of a based on two candidates b1 and b2 for which b1 ∪ b2 = a

of length |b1| = |b2| = |a| − 1. The ids of a are obtained by the intersection of

the sets of instance ids of the smaller length candidates and has a complexity of

O(|(b1)ids|+ |(b2)ids|). As this is done for each class and in a worst case it would

cover the whole dataset, it takes O(|D|+|D|). Doing this for all candidates gives

O(|Cands||D|).

After the initialization step Classy iteratively finds the best rule to add for a

total of |R| runs, where R is the PRL that Classy outputs at the end. The

time complexity of this loop is dominated by the removal of the instance ids

that all candidates have in common with the last added rule. Using again the

fact that the intersection of instance ids is upper bounded by the dataset size

|D|, the removal of instance ids takes at most O(|R||Cands||D|) time. Given

that the rule list can grow at most to the size of the dataset, an upper bound on

23

this complexity is O(|Cands||D|2). Joining everything together, Classy has a

worst case time complexity of

O(|Cands||D|2),

which is really a worst case scenario, because in general MDL will obtain PRLs

that are much smaller than the dataset size, i.e., |R| � |D|, making it possible

to treat it as a constant. Making this assumption we obtain a more realistic

worst case time complexity of

O(|Cands| log |Cands|+ |Cands||D|).

Note that the time complexity associated with the Gamma function used in the

computation of lengths (10) and gains (15) of data encoding is not problem-

atic when compared with the other terms. This is due to its recursive compu-

tation for |D| values, which can be stored in a dictionary. In total this takes

O(M(|D|)+ |D|) time, where M(∗) is the complexity of the used multiplication;

in the case of our Python implementation this is the Katsuraba multiplication.

From then on, the lookup of a value only takes O(1) time.

In terms of memory complexity, Classy has to store for each candidate for

each class: their instance ids O(|(a)ids||Y|), their support O(|Y|), and their

score O(|Y|). It is easy to see that |(a)ids||Y| is upper bounded by the dataset

size |D| and that all other memory requirements will be dominated by this

part. Also, the storage of the gamma function for each integer up to |D| is only

O(|D|), which gets dwarfed by the instance storage, thus obtaining a worst case

memory complexity of

O(|D||Cands|).

6. Experiments

In this section we empirically evaluate our approach3, first in terms of its sensi-

tivity to the candidate set provided and the relationship between compression

3Implementation available on https://github.com/HMProenca/MDLRuleLists

24

https://github.com/HMProenca/MDLRuleLists

and classification performance, and second in comparison to a set of represen-

tative, state-of-the-art baselines in terms of classification performance, inter-

pretability, overfitting, and runtime.

Data. We use 17 varied datasets (see Table 3) from the LUCS/KDD4 repository,

all of which are commonly used in classification papers. They were selected to be

diverse, ranging from 150 to 48 842 samples, from 16 to 157 Boolean variables,

and from 2 to 18 classes.

Candidates. Frequent pattern mining algorithms generate different candidate

sets by setting different values for the minimum support per class threshold ms

and maximum pattern length lmax. To demonstrate that Classy is insensitive

to the exact settings of these parameters, we fix a single set of parameter values

for all experiments on all datasets (except when we investigate the influence of

the candidate set). Specifically, we use lmax = 4 and ms = 5%, to obtain a

desirable trade-off between candidate set size, convergence, and runtime.

These values were objectively derived based on two criteria: making each run

finish within 10 minutes while demonstrating that Classy can deal with large

candidate set sizes. First we chose lmax = 4 because this potentially results in

very large candidate sets with many redundant rules (i.e., rules that are very

similar / strongly overlapping). We then fixed ms by requiring the runs for all

datasets to strictly finish in under 10 minutes and for most datasets even under

1 minute, so as to be comparable to CART , C5.0 and JRip in runtime, and

also to have attained (empirical) convergence in terms of compression ratio on

the training set—further lowering ms would not increase compression—as can

be seen from the vertical dashed lines in Figure 3c.

Candidate patterns are mined using Borgelt’s implementation of the well-known

frequent pattern mining algorithm FP-growth [6]. The same candidate set was

used for all experiments except when assessing its influence on Classy in Sec-

tion 6.2. For that experiment we fixed lmax = 4 and varied the minimum support

4http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.

html

25

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

threshold per class from ms = {0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%}.

Evaluation criteria. We evaluate and compare our approach based on classi-

fication performance, overfitting, interpretability, and runtime. In addition, we

assess the influence of the candidate set on our algorithm and whether better

compression corresponds to better classification. All results presented are av-

erages obtained using 10 times repeated 10-fold cross-validation (with different

seeds).

To quantify how well a rule list compresses the class labels, we define relative

compression as

L% =
L(D,R)

L(D, {∅})
, (16)

where L(D, {∅}) is the compressed size of the data given the rule list with only

a default rule, i.e., with only the dataset priors for each class. We measure

relative compression on the training data, as we use that for model selection.

Classification performance is measured using three measures: accuracy: bal-

anced accuracy [8]; and Area Under the ROC Curve (AUC). Each measure

portrays different aspects of the classifier performance. Accuracy shows the

total number of correct classifications. Balanced accuracy, or averaged class

accuracy, takes into account the imbalance of class distributions in the dataset

and gives the same importance to each class. It is obtained by averaging the

recall associated with each class label; informally:

bAcc =
1

|Y|
∑
c∈Y

recall(c)

AUC, on the other hand, is not based on a fixed threshold and takes into account

the probabilities associated with each prediction. In case of multiclass datasets

we use weighted AUC [34], as it takes into account the class distribution in

the dataset. Weighted AUC is obtained by weighing per-class ‘binary’ AUCs

(one-versus-all) with the marginal class frequencies:

AUCweighted =
∑
c∈Y

AUC(c)
supp(c)

|D|
, (17)

where AUC(c) is the one-versus-all AUC for class label c and supp(c)
|D| is the

frequency of that same class label.

26

For interpretability we follow the most commonly used interpretation, i.e., that

smaller models are easier to understand [12]. With this in mind, we assess:

the number of rules and the number of conditions per rule; in all cases, fewer

is better. When analyzing decision trees, the number of leaves is given as the

number of rules (which includes the default rule), and the average depth of the

leaves (except for the longest—assumed the default rule) is given as the number

of conditions per rule. Although rule lists derived from decision trees can often

be simplified, we here choose not to do this because these directly measures how

it would be read by humans.

Overfitting is measured in terms of the absolute difference between the AUC

performance in the training set and in the test set. Finally, for runtime, wall

clock time in minutes is measured; no parallelization was used.

Note on standard deviations. Given that the number of values reported

both in figures and tables is large, and that standard deviations are usually

2+ orders of magnitude smaller than their corresponding averages, we choose

not to report them—to avoid unnecessarily cluttering the presentation. We did

analyse them though and explicitly comment on the few cases where relevant.

6.1. Compression versus classification

We first investigate the effect of using absolute (12) or normalized gain (15). To

this end Figure 2 depicts how the two heuristics perform with respect to relative

compression (on the training set) and AUC (on the test set).

The first observation is that better compression of the training data clearly

corresponds to better classification performance on the test data. This is backed

by a correlation of −0.92 and a corresponding p-value lower than 0.0001 for the

independence test between both variables for the normalized gain data. This is

a crucial observation, as it constitutes an independent, empirical validation of

using the MDL principle for rule list selection. Moreover, it also shows that MDL

successfully protects against overfitting: using normalized gain leads to models

that not only compress the training data better, but also provides accurate

predictions on the test data.

27

Dataset |D| |V | |Y| |Cands|

hepatitis 155 48 2 39137

ionosphere 351 155 2 332560

horsecolic 368 81 2 23552

cylBands 540 120 2 304749

breast 699 14 2 299

pima 768 34 2 543

tictactoe 958 26 2 1907

mushroom 8124 84 2 79602

adult 48842 96 2 7231

iris 150 14 3 144

wine 178 63 3 13439

waveform 5000 96 3 86889

heart 303 46 5 21876

pageblocks 5473 39 5 2902

led7 3200 22 10 2507

pendigits 10992 81 10 107001

chessbig 28056 54 18 1384

Table 3: Dataset properties: number of {samples, binary variables, classes, average number

of candidate patterns per fold for Classy with ms = 5% and lmax = 4}. The datasets are

ordered first by number of classes and then by the number of samples.

The second observation is that normalized gain performs better overall than

absolute gain: AUC is higher in 15 out of 17 cases and relative compression is

lower or equal in 11 out of 17 times. This confirms that normalized gain is, as

we hypothesized, the best choice. We will therefore use normalized gain for the

remaining experiments.

28

Figure 2: Relation between compression and AUC; better compression on the training set

(lower relative compression) corresponds to better classification on the test set (higher AUC).

Obtained with Classy using normalized (squares) and absolute (circles) gain, on all 17

datasets; each point represents the 10 times repeated 10-fold average for one dataset with

one type of gain; each connected pair represents the same dataset, for the two types of gain.

6.2. Candidate set influence

In this set of experiments we study the influence of the candidate set on Classy,

which technically is its only “parameter”, as it is the only part that can influence

its output given the same dataset. In order to vary the candidate set objectively,

the minimum support threshold ranges overms = {0.1%, 0.5%, 1%, 2%, 5%, 10%,

15%, 20%, 25%} and the maximum pattern length was fixed at lmax = 4, allow-

ing the generation of large candidate sets.

The results can be seen in the set of Figures 3, which show the influence of the

candidate set on Classy through: the size of candidates mined in Figure 3a;

runtime in Figure 3b; compression on the training set in Figure 3c; AUC in the

test set in Figure 3d; and the number of rules in a rule list in Figure 3e.

Figure 3a shows the growth of of the candidate set size with the minimum

29

0 5 10 15 20 25
minimum support threshold (%)

102

103

104

105

106
ca

nd
id

at
e

se
t s

ize
hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(a) candidate set size

0 5 10 15 20 25
minimum support threshold (%)

10 3

10 2

10 1

100

101

ru
nt

im
e

(m
in

.)

hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(b) runtime

support threshold used, and that, as expected, its growth is exponential with

the change in minimum support. Figure 3b shows that in general the runtime

increases at a rate similar to the increase in candidate size of figure 3a. This is

in accordance with our analysis of time complexity in Section 5.5, which tells

us that the time complexity of Classy grows proportionally to the dataset

size times the candidate set size, thus, given a fixed dataset size it becomes

30

0 5 10 15 20 25
minimum support threshold (%)

0.0

0.2

0.4

0.6

0.8

1.0
re

la
tiv

e
co

m
pr

es
sio

n
hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(c) compression in training set

0 5 10 15 20 25
minimum support threshold (%)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(d) AUC in test set

proportional only to the candidate set size.

Figures 3c and 3d show how Classy performs in classification in terms of com-

pression in the training set and AUC in the test set, respectively. The values

for both plots remain constant for most cases, and when a value deteriorates

in terms of compression (increase in compression ratio) for smaller candidate

31

0 5 10 15 20 25
minimum support threshold (%)

101

102

nu
m

be
r o

f r
ul

es
hepatitis
ionosphere
horsecolic
cylBands
breast
pima
tictactoe
mushroom
adult
iris
wine
waveform
heart
pageblocs
led7
pendigits
chessbig

(e) number of rules

Figure 3: Influence of the minimum support threshold on {candidate set size; runtime

(in minutes); relative compression on the training set; AUC in the test set; number of

rules} for a maximum rule length of 4 and a minimum support threshold per class of

ms = {0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%}. The values were averaged over 10 times

repeated 10-fold crossvalidation and each dataset is connected by a line to aid visualization.

The vertical dashed line represents the selected minimum support of 5% used to compare

against the other algorithms.

sets, it also deteriorates accordingly in terms of AUC (decrease in AUC) in the

test set. We make two important observations: 1) the minimum in compres-

sion is achieved at the minimum support used for 13 out of 17 datasets, and

in the cases where it does not happen the difference in relative compression is

below 1%, which tells us that Classy can find a good description of the data

using large candidate sets, without too greedily using rules that only cover few

instances; 2) the minimum in compression and maximum in AUC are achieved

for the same support value for 12 out 17 cases, and in the other cases, the dif-

ference is usually smaller than 2% in both measures, revealing the robustness

of our MDL formulation at obtaining models that generalize well. The main

exception is ionosphere, where the best AUC is found at the minimum support

threshold of 10%, while the lowest threshold finds a PRL with 3% lower AUC,

32

without almost any change in compression. This can be explained by the rel-

atively small number of examples of ionosphere (351 instances) combined with

its peculiar structure.

Figure 3e shows the number of rules selected based on the candidate set. As

expected the number of rules selected only decreases or remains constant with

the candidate set, except for mushroom. Upon closer inspection, we observe

that this is due to the disappearance of a rule with good performance but low

coverage from the candidate set, which has to be replaced by a combination of

other rules. The cases where many more rules are selected for lower minimum

support thresholds, such as chessbig and adult, have lower compression and

higher AUC values for these large number of rules, which makes these selections

sustainable.

6.3. Classification performance

We now compare the classification performance of Classy to Scalable Bayesian

Rule Lists (SBRL) [46], JRip5, FURIA5, CART6, C5.07, and Support Vector

Machines8 (SVM). These methods are state-of-the-art classifiers, and SBRL,

CART, C5.0, JRip, and FURIA—a fuzzy unordered rule induction algorithm—

are clearly related to our approach. C5.0 is a newer version of C4.5, and JRip

is a Java-implementation of RIPPER.

Classy has no parameters apart from the candidate set, which was generated

using FP-growth with ms = 5% and lmax = 4 for each dataset (as described at

the beginning of Section 6). We tuned CART by selecting the best performing

model on the training set from the models generated with the following com-

plexity parameters: {0.001; 0.003; 0.01; 0.03; 0.1}. The same was done for C5.0,

with confidence factors: {0.05; 0.15; 0.25; 0.35; 0.45}. The SVM, with radial ker-

nel, was tuned using 3-fold cross-validation and a grid search on γ = {2−6:0}

5 https://cran.r-project.org/package=RWeka
6https://cran.r-project.org/package=rpart
7https://cran.r-project.org/package=C50
8https://cran.r-project.org/package=e1071

33

https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=e1071

and c = {2−4:4} within the training set. JRip and FURIA were tuned by setting

their hyperparameters to 3 folds, a minimum weight of 2, and 2 optimization

runs.

SBRL was trained using the guidelines provided by the authors [46]: the number

of chains was set to 25; iterations to 5000; η, representing the average size of

patterns in a rule, to 1; and λ, representing the average number of rules, to 5.

The algorithm was first run on the training set and then re-run with λ changed

to the number of rules obtained. In an attempt to follow their guidelines to use

around 300 candidate rules, minimum and maximum itemset length were set

to 1 and 2 (or 3 if possible) respectively, while the minimum threshold for the

negative and positive classes was set to one of {5%, 10%, 15%}. Note that we

initially attempted a fair comparison by using the same candidates for SBRL as

for Classy, but due to the limitations on the number of rules that SBRL could

practically handle this unfortunately turned out to be infeasible.

The results are presented in Table 4. The SVM models achieves the best ranking

overall, but they do not belong to the class of interpretable models.

Classy performs on par with most tree- and rule-based models in terms of ac-

curacy and balanced accuracy, worst than FURIA for these two measures, and

better than these in terms of AUCs for multiclass datasets. The better perfor-

mance of FURIA can be explained by the fact that it uses fuzzy rule sets rather

than probabilistic rule lists; this allows for multiple rules to be activated and

aggregated for a single classification, which improves predictive performance but

makes interpretability less straightforward. This also means that the number of

rules and conditions cannot be directly compared: a FURIA rule set consisting

of 5 rules actually translates to up to 32 unique rules in the rule list setting.

Further, FURIA does not provide probabilistic predictions, unlike our approach.

Comparing to other rule list models, such as SBRL and JRip, Classy performs

better for most of the measures used. When viewed against the tree-based mod-

els, we can see that our method performs on par with CART for most measures

and slightly worse than C5.0, except for AUC in the multiclass scenario. Also,

as we will show later, C5.0 tends to obtain equivalent rule lists that are much

34

bigger than the ones produced by Classy, which makes them perform better

in general (but not always).

6.4. Interpretability

The results are shown in Table 5, where we use AUC, the number of rules, and

the number of conditions to compare the trade-off between AUC and model

complexity of the tree- and rule-based models. Note that we choose AUC for

predictive performance as it agrees with our goal of using the probabilities out-

put of Classy to explain the decisions made. Also note that we intentionally

removed FURIA from the rankings of the number of rules and conditions as its

models are rule sets—not rule lists.

For binary datasets Classy is in a middle ranking, better than SBRL and

JRip, and worst than CART, C5.0 nd FURIA. On the other hand, in multi-

class datasets it achieves a much lower (=better) ranking than all the other

algorithms.

Classy tends to find more compact models, with similar number of rules and

fewer logical conditions in total, than C5.0, CART, and JRip, that are as accu-

rate or better than these. This can be clearly seen by its average rank of 2 and

1.9 for rules and 1.7 and 1.5 for the total number of conditions, for binary and

multiclass datasets respectively. It also can be seen that for most datasets it

obtained the lowest number of conditions of all tree- and rule-based classifiers.

Although SBRL also finds very compact rule lists, with small number of rules

and conditions, the low variance between the reported values for the different

datasets suggests that this strongly depends on the hyperparameter settings,

which penalize too strongly the number of rules not around the user defined

expected average number of rules. Indeed, the compact rule lists exhibit subpar

classification performance for some datasets (i.e., hepatitis and tictactoe). This

suggests that without additional (computation-intensive) tuning of these hyper-

parameters, the recommended procedure for SBRL may lead to underfitting. As

expected, C5.0, with its tendency to maximize the classification performance as

much as possible, tends to create overgrown models, such as the almost 3000

35

A
c
c
u
ra

c
y

B
a
la

n
c
e
d

a
c
c
u
ra

c
y

A
U

C

d
a
ta

se
ts

C
l
a
ss
y

S
B

R
L

J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

S
V

M
C
l
a
ss
y

B
R

L
J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

S
V

M
C
l
a
ss
y

B
R

L
J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

S
V

M

h
e
p
a
ti

ti
s

0
.8

3
0
.7

8
0
.7

9
0
.7

9
0
.7

9
0
.7

9
0
.8

3
0
.6

6
0
.5

9
0
.6

5
0
.6

7
0
.6

5
0
.6

1
0
.7

0
0
.6

7
0
.6

2
0
.6

4
0
.7

2
0
.6

8
0
.7

0
0
.8

5

io
n
o
sp

h
e
re

0
.8

9
0
.8

8
0
.9

0
0
.9

1
0
.9

0
0
.9

0
0
.9

2
0
.8

7
0
.8

6
0
.8

9
0
.8

9
0
.8

9
0
.8

8
0
.9

1
0
.8

8
0
.8

8
0
.8

9
0
.9

2
0
.9

2
0
.9

1
0
.9

6

h
o
rs

e
c
o
li
c

0
.8

0
0
.8

4
0
.8

1
0
.8

3
0
.8

3
0
.8

3
0
.8

4
0
.7

8
0
.8

2
0
.8

0
0
.8

1
0
.8

2
0
.8

1
0
.8

2
0
.8

2
0
.8

3
0
.8

1
0
.8

5
0
.8

5
0
.8

4
0
.8

8

c
y
lB

a
n
d
s

0
.7

0
0
.6

8
0
.7

3
0
.7

3
0
.7

4
0
.7

6
0
.8

1
0
.6

5
0
.6

5
0
.7

2
0
.7

1
0
.7

3
0
.7

4
0
.8

0
0
.7

0
0
.7

3
0
.7

4
0
.7

8
0
.7

8
0
.7

9
0
.8

8

b
re

a
st

0
.9

3
0
.9

4
0
.9

3
0
.9

3
0
.9

4
0
.9

4
0
.9

4
0
.9

4
0
.9

5
0
.9

4
0
.9

4
0
.9

5
0
.9

5
0
.9

5
0
.9

4
0
.9

5
0
.9

6
0
.9

5
0
.9

5
0
.9

5
0
.9

6

p
im

a
0
.7

3
0
.7

4
0
.7

3
0
.7

3
0
.7

3
0
.7

4
0
.7

4
0
.6

6
0
.6

9
0
.6

8
0
.6

7
0
.6

7
0
.6

8
0
.6

7
0
.7

0
0
.6

9
0
.6

8
0
.7

1
0
.6

9
0
.6

8
0
.7

5

ti
c
ta

c
to

e
0
.9

8
0
.8

1
0
.9

8
0
.9

2
0
.9

4
0
.9

9
0
.9

9
0
.9

8
0
.7

5
0
.9

7
0
.9

1
0
.9

3
0
.9

8
0
.9

9
0
.9

8
0
.8

6
0
.9

7
0
.9

7
0
.9

8
1
.0

0
1
.0

0

m
u
sh

ro
o
m

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0

a
d
u
lt

0
.8

5
0
.8

5
0
.8

5
0
.8

5
0
.8

5
0
.8

0
0
.8

6
0
.7

5
0
.7

5
0
.7

4
0
.7

5
0
.7

6
0
.7

4
0
.7

6
0
.8

9
0
.8

8
0
.7

4
0
.8

8
0
.8

7
0
.7

6
0
.8

6

ra
n
k

4
.4

4
.6

4
.8

4
.9

4
.1

3
.3

1
.9

4
.9

4
.3

4
.4

4
.7

3
.6

3
.8

2
.3

4
.6

4
.8

5
.4

3
.9

3
.8

3
.8

1
.7

ir
is

0
.9

5
0
.9

4
0
.9

3
0
.9

3
0
.9

3
0
.9

4
0
.9

5
0
.9

4
0
.9

3
0
.9

3
0
.9

3
0
.9

4
0
.9

7
0
.9

7
0
.9

7
0
.9

7
0
.9

5
0
.9

9

w
in

e
0
.8

9
0
.8

8
0
.8

7
0
.8

9
0
.9

3
0
.9

5
0
.9

0
0
.8

9
0
.8

7
0
.9

0
0
.9

2
0
.9

5
0
.9

5
0
.9

3
0
.9

3
0
.9

5
0
.9

6
1
.0

0

w
a
v
e
fo

rm
0
.7

5
0
.7

7
0
.7

6
0
.7

6
0
.7

8
0
.8

0
0
.7

5
0
.7

7
0
.7

6
0
.7

6
0
.7

8
0
.8

0
0
.9

1
0
.8

7
0
.9

0
0
.9

0
0
.8

6
0
.9

4

h
e
a
rt

0
.5

6
0
.5

4
0
.5

7
0
.5

4
0
.5

7
0
.5

9
0
.3

0
0
.2

2
0
.3

1
0
.3

0
0
.2

7
0
.3

0
0
.7

4
0
.5

4
0
.7

6
0
.7

2
0
.6

9
0
.8

4

p
a
g
e
b
lo

c
s

0
.9

3
0
.9

3
0
.9

3
0
.9

2
0
.9

2
0
.9

3
0
.5

1
0
.5

2
0
.5

2
0
.4

8
0
.5

2
0
.5

2
0
.7

4
0
.7

2
0
.7

4
0
.6

9
0
.7

3
0
.7

2

le
d
7

0
.7

4
0
.7

2
0
.7

5
0
.7

5
0
.7

4
0
.7

6
0
.7

4
0
.7

2
0
.7

5
0
.7

5
0
.7

4
0
.7

6
0
.9

4
0
.9

2
0
.9

4
0
.9

4
0
.8

8
0
.9

5

p
e
n
d
ig

it
s

0
.9

2
0
.9

5
0
.9

2
0
.9

6
0
.9

7
0
.9

8
0
.9

2
0
.9

5
0
.9

2
0
.9

6
0
.9

7
0
.9

9
0
.9

9
0
.9

8
0
.9

9
1
.0

0
0
.9

9
1
.0

0

ch
e
ss

b
ig

0
.5

0
0
.5

2
0
.4

9
0
.7

8
0
.6

2
0
.9

3
0
.4

4
0
.6

1
0
.4

1
0
.8

1
0
.6

7
0
.9

2
0
.9

0
0
.8

1
0
.8

7
0
.9

6
0
.6

7
1
.0

0

ra
n
k

4
.0

3
.4

3
.2

2
.6

1
.6

1
.1

4
.1

4
.4

4
.1

4
.1

3
.2

1
.3

2
.6

5
.1

3
.8

3
.4

4
.6

1
.5

T
a
b

le
4
:

C
la

ss
ifi

ca
ti

o
n

p
er

fo
rm

a
n

ce
a
v
er

a
g
e

re
su

lt
s

(1
0

ti
m

es
re

p
ea

te
d

1
0
-f

o
ld

cr
o
ss

v
a
li
d

a
ti

o
n

)
m

ea
su

re
d

th
ro

u
g
h
{a

cc
u

ra
cy

;
b

a
la

n
ce

d
a
cc

u
ra

cy
;

A
re

a

U
n

d
er

th
e

R
O

C
C

u
rv

e
(A

U
C

)
(w

ei
g
h
te

d
A

U
C

fo
r

m
u

lt
ic

la
ss

d
a
ta

se
ts

)}
,

p
er

d
a
ta

se
t
{b

in
a
ry

;m
u

lt
ic

la
ss
}

fo
r

ea
ch

a
lg

o
ri

th
m

.
A

t
th

e
b

o
tt

o
m

o
f

th
e

b
in

a
ry

a
n

d
m

u
lt

ic
la

ss
d

a
ta

se
ts

th
e

a
v
er

a
g
e

ra
n

k
o
f

th
e

a
lg

o
ri

th
m

fo
r

ea
ch

is
p

re
se

n
te

d
.

T
h

e
ra

n
k

o
f

1
is

g
iv

en
fo

r
th

e
b

es
t

v
a
lu

e
(h

ig
h

es
t

cl
a
ss

ifi
ca

ti
o
n

p
er

fo
rm

a
n

ce
)

a
n

d
7

a
n

d
6

fo
r

th
e

w
o
rs

t
in

b
in

a
ry

a
n

d
m

u
lt

ic
la

ss
,

re
sp

ec
ti

v
el

y.
N

o
te

th
a
t

S
B

R
L

ca
n

n
o
t

d
o

m
u

lt
ic

la
ss

cl
a
ss

ifi
ca

ti
o
n

,
h

en
ce

o
n

ly
b

ei
n

g

p
re

se
n
t

in
th

e
b

in
a
ry

ra
n

k
in

g
a
n

d
th

e
b

la
n

k
sp

a
ce

s.

36

rules for chessbig, that do not necessarily generalize well, such is the case in

adult, where it obtained the same number of rules as Classy but with a 2%

lower AUC, and for pendigits were it obtained a number of rules around 4 times

higher than Classy and CART for the same performance.

6.5. Statistical significance testing

To analyze whether the results Tables 4 and 5 are statistically different [11], we

use two non-parametric multiple hypothesis tests, namely Friedman’s test [14]

and Iman and Davenport’s test[22], on the rankings of the algorithms.

The results can be seen in the left side of Table 6, which divides the datasets

into two groups, for binary and multiclass datasets respectively. The results

show that there are significant differences for most measures (significance level

0.05). The only exceptions are balanced accuracy in the binary case, AUC of

rule-based models in the binary case, and the number of rules for the multi-class

case.

For those cases where the null hypothesis—stating that the algorithms perform

on par—is rejected we proceed with a post-hoc Holm’s test [19] for pairwise

comparisons with Classy as control algorithm.

The results of these pairwise comparisons can be seen in the right side of Ta-

ble 6. For most of these tests the null hypothesis—stating that Classy and its

competitor perform on par—cannot be rejected. This can be mostly explained

by the relatively small number of datasets; the power of the tests is not very

high. We therefore cannot draw strong conclusions from these results, but this is

not necessarily a negative outcome: we aimed at showing that Classy performs

as well as other rule- and tree-based algorithms while obtaining simpler models.

The results show that Classy does use significantly fewer conditions than C5.0

for both multiclass and binary datasets, and than CART for the binary case.

Also, as expected the SVM obtained always better results than Classy except

for multiclass AUC. FURIA was better in terms of accuracy but worse in terms

of AUC.

37

A
U

C
N

u
m

b
e
r

o
f

ru
le

s
N

u
m

b
e
r

o
f

c
o
n
d
it

io
n
s

d
a
ta

se
ts

C
l
a
ss
y

S
B

R
L

J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

C
l
a
ss
y

S
B

R
L

J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

C
l
a
ss
y

S
B

R
L

J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

h
e
p
a
ti

ti
s

0
.6

7
0
.6

2
0
.6

4
0
.7

2
0
.6

8
0
.7

0
2

2
3

4
9

4
∗

1
2

5
6

3
8

7
∗

io
n
o
sp

h
e
re

0
.8

8
0
.8

8
0
.8

9
0
.9

2
0
.9

2
0
.9

1
6

3
6

5
1
2

7
∗

4
4

9
1
0

5
8

1
2
∗

h
o
rs

e
c
o
li
c

0
.8

2
0
.8

3
0
.8

1
0
.8

5
0
.8

5
0
.8

4
4

2
4

6
1
6

6
∗

3
2

7
1
0

7
6

9
∗

c
y
lB

a
n
d
s

0
.7

0
0
.7

3
0
.7

4
0
.7

8
0
.7

8
0
.7

9
5

3
7

2
0

5
9

1
1
∗

4
4

1
7

1
1
1

8
9
7

1
8
∗

b
re

a
st

0
.9

4
0
.9

5
0
.9

6
0
.9

5
0
.9

5
0
.9

5
3

3
4

5
6

5
∗

3
5

1
1

1
3

1
5

1
3
∗

p
im

a
0
.7

0
0
.6

9
0
.6

8
0
.7

1
0
.6

9
0
.6

8
3

2
3

1
0

1
1

2
∗

3
3

3
2
3

4
7

2
∗

ti
c
ta

c
to

e
0
.9

8
0
.8

6
0
.9

7
0
.9

7
0
.9

8
1
.0

0
9

6
1
0

2
4

4
2

1
0
∗

2
1

1
5

2
7

6
6

2
5
4

1
7
∗

m
u
sh

ro
o
m

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
6

5
5

8
9

8
∗

7
8

7
2
5

3
5

1
7
∗

a
d
u
lt

0
.8

9
0
.8

8
0
.7

4
0
.8

8
0
.8

7
0
.7

6
5
3

1
3

1
7

2
2

5
2

2
1
∗

1
1
4

2
5

8
1

1
0
6

6
3
0

3
4
∗

ra
n
k

3
.8

4
.0

4
.4

3
.0

2
.9

2
.9

2
.6

1
.1

2
.8

3
.7

4
.9

∗
1
.7

1
.7

2
.7

3
.9

5
.0

∗

ir
is

0
.9

7
0
.9

7
0
.9

7
0
.9

7
0
.9

5
3

3
3

3
2
∗

2
2

3
3

3
∗

w
in

e
0
.9

5
0
.9

3
0
.9

3
0
.9

5
0
.9

6
5

5
5

8
4
∗

4
7

6
2
4

6
∗

w
a
v
e
fo

rm
0
.9

1
0
.8

7
0
.9

0
0
.9

0
0
.8

6
2
5

2
3

4
6

8
1

1
5
∗

6
5

1
0
8

1
2
5

6
8
3

3
3
∗

h
e
a
rt

0
.7

4
0
.5

4
0
.7

6
0
.7

2
0
.6

9
5

3
1
1

3
9

2
∗

4
6

2
8

2
9
9

2
∗

p
a
g
e
b
lo

c
s

0
.7

4
0
.7

2
0
.7

4
0
.6

9
0
.7

3
1
3

8
1
0

9
3
∗

1
3

9
2
0

3
7

4
∗

le
d
7

0
.9

4
0
.9

2
0
.9

4
0
.9

4
0
.8

8
2
0

1
9

2
9

2
8

3
∗

4
6

7
4

4
3

1
3
8

6
∗

p
e
n
d
ig

it
s

0
.9

9
0
.9

8
0
.9

9
1
.0

0
0
.9

9
7
8

1
0
7

6
6

2
6
6

7
4
∗

2
2
1

4
3
9

3
0

2
9
3
4

1
3
3
∗

ch
e
ss

b
ig

0
.9

0
0
.8

1
0
.8

7
0
.9

6
0
.6

7
1
9
5

4
1
8

1
1
8

2
8
7
4

2
8
1
∗

4
8
3

2
6
8
8

2
5

4
8
8
2
6

8
0
3
∗

ra
n
k

1
.8

4
.3

2
.9

2
.4

3
.8

2
.3

2
.0

2
.2

3
.5

∗
1
.5

2
.4

2
.1

4
.0

∗

T
a
b

le
5
:

In
te

rp
re

ta
b

il
it

y
p

er
fo

rm
a
n

ce
a
v
er

a
g
e

re
su

lt
s

(1
0

ti
m

es
re

p
ea

te
d

1
0
-f

o
ld

cr
o
ss

v
a
li
d

a
ti

o
n

)
o
f

tr
ee

-
a
n

d
ru

le
-b

a
se

d
m

o
d

el
s

m
ea

su
re

d
th

ro
u

g
h

{A
re

a
U

n
d

er
th

e
R

O
C

C
u

rv
e

(A
U

C
)

(w
ei

g
h
te

d
A

U
C

fo
r

m
u

lt
ic

la
ss

d
a
ta

se
ts

);
n
u

m
b

er
o
f
ru

le
s;

n
u

m
b

er
o
f
co

n
d

it
io

n
s
},

p
er

d
a
ta

se
t
{b

in
a
ry

;
m

u
lt

ic
la

ss
}

fo
r

ea
ch

a
lg

o
ri

th
m

.
R

a
n

k
g
iv

es
th

e
a
v
er

a
g
e

ra
n

k
o
f

ea
ch

a
lg

o
ri

th
m

fo
r

b
in

a
ry

a
n

d
m

u
lt

ic
la

ss
d

a
ta

se
ts

.
T

h
e

ra
n

k
o
f

1
is

g
iv

en
fo

r
th

e
b

es
t

v
a
lu

e

(h
ig

h
es

t
A

U
C

o
r

lo
w

es
t

n
u

m
b

er
o
f

ru
le

s/
co

n
d

it
io

n
s)

.
N

o
te

th
a
t

S
B

R
L

ca
n

n
o
t

d
o

m
u

lt
ic

la
ss

cl
a
ss

ifi
ca

ti
o
n

,
h

en
ce

o
n

ly
b

ei
n

g
p

re
se

n
t

in
th

e
b

in
a
ry

ra
n

k
in

g
a
n

d
th

e
b

la
n

k
sp

a
ce

s.

∗
T

h
e

n
u

m
b

er
o
f

ru
le

s
a
n

d
co

n
d

it
io

n
s

u
se

d
b
y

F
U

R
IA

a
re

p
re

se
n
te

d
a
s

a
re

fe
re

n
ce

,
a
s

th
ey

a
re

n
o
t

d
ir

ec
tl

y
co

m
p

a
ra

b
le

to
th

o
se

o
f

th
e

o
th

er
m

et
h

o
d

s

a
s

th
ey

fo
rm

ru
le

se
ts

(a
n

d
ca

n
n

o
t

b
e

tr
iv

ia
ll
y

tr
a
n

sl
a
te

d
to

ru
le

li
st

s)
.

F
U

R
IA

w
a
s

th
er

ef
o
re

a
ls

o
n

o
t

in
cl

u
d

ed
in

th
e

ra
n

k
in

g
s

o
f

th
o
se

cr
it

er
ia

.

38

D
iff

e
re

n
c
e

te
st

s
H

o
lm

’s
p

o
st

-h
o
c

p
ro

c
e
d
u
re

(C
l
a
ss
y

a
s

c
o
n
tr

o
l)

F
ri

e
d
m

a
n

Im
a
n

a
n
d

D
a
v
e
n
p

o
rt

S
B

R
L

J
R

ip
C

A
R

T
C

5
.0

F
U

R
IA

S
V

M

M
e
a
su

re
s

C
la

ss
e
s
k

χ
2

p
H

0
F

p
H

0
p
H

0
p
H

0
p
H

0
p
H

0
p
H

0
p
H

0

A
c
c

b
in

a
ry

7
1
3
.3

6
0
.0

3
8

R
2
.6

3
0
.0

2
8

R
0
.8

2
7

—
0
.7

0
3

—
0
.5

8
5

—
0
.7

4
3

—
0
.3

0
0

—
0
.0

1
4

R

m
u
lt

i
6

1
7
.3

4
0
.0

0
4

R
5
.3

6
<

0
.0

0
1

R
0
.5

0
4

—
0
.3

8
5

—
0
.1

4
2

—
0
.0

0
9

R
0
.0

0
2

R

b
A

c
c

b
in

a
ry

7
8
.9

4
0
.1

7
7

—
1
.5

9
0
.1

7
1

—

m
u
lt

i
6

1
5
.7

1
0
.0

0
8

R
4
.5

3
0
.0

0
3

R
0
.7

3
8

—
1
.0

0
0

—
1
.0

0
0

—
0
.3

5
0

—
0
.0

0
3

R

A
U
C

a
ll

b
in

a
ry

7
1
6
.0

0
0
.0

1
4

R
3
.3

7
0
.0

0
7

R
0
.8

2
7

—
0
.4

4
5

—
0
.3

0
0

—
0
.4

1
3

—
0
.4

1
3

—
0
.0

0
5

R

m
u
lt

i
6

2
0
.0

0
0
.0

0
1

R
7
.0

0
<

0
.0

0
1

R
0
.0

0
8

R
0
.2

2
9

—
0
.4

2
3

—
0
.0

3
3

—
0
.2

2
9

—

A
U
C

r
u
le

s
b
in

a
ry

6
5
.7

0
0
.3

3
7

—
1
.1

6
0
.3

4
6

—

m
u
lt

i
5

1
3
.1

0
0
.0

1
1

R
4
.8

5
0
.0

0
4

R
0
.0

0
2

R
0
.1

5
5

—
0
.4

2
9

—
0
.0

1
1

R

R
u
le

s
b
in

a
ry

5
2
8
.1

8
<

0
.0

0
1

R
2
8
.8

2
<

0
.0

0
1

R
0
.0

5
3

—
0
.7

6
6

—
0
.1

3
6

—
0
.0

0
2

R

m
u
lt

i
4

6
.6

4
0
.0

8
4

—
2
.6

8
0
.0

7
3

—

C
o
n
d
it

io
n
s

b
in

a
ry

5
2
9
.4

0
<

0
.0

0
1

R
3
5
.6

4
<

0
.0

0
1

R
1
.0

0
0

—
0
.2

0
5

—
0
.0

1
1

R
<

0
.0

0
1

R

m
u
lt

i
4

1
6
.3

5
0
.0

0
1

R
1
4
.9

6
<

0
.0

0
1

R
0
.1

7
5

—
0
.3

3
3

—
<

0
.0

0
1

R

T
a
b

le
6
:

S
ta

ti
st

ic
a
l

si
g
n

ifi
ca

n
ce

te
st

in
g

o
f

d
iff

er
en

ce
s

b
et

w
ee

n
th

e
a
lg

o
ri

th
m

s.
R

es
u

lt
s

fo
r

F
ri

ed
m

a
n

(χ
2

st
a
ti

st
ic

),
a
n

d
Im

a
n

a
n
d

D
a
v
en

p
o
rt

(F

st
a
ti

st
ic

)
te

st
s

fo
r

a
ll

th
e

m
ea

su
re

s
p

re
se

n
te

d
in

T
a
b

le
4

a
n

d
5

fo
r

b
in

a
ry

a
n

d
m

u
lt

ic
la

ss
d

a
ta

se
ts

w
it

h
a

si
g
n

ifi
ca

n
ce

le
v
el

o
f

0
.0

5
.

In
ca

se
th

e
n
u

ll

h
y
p

o
th

es
is

fo
r

th
e

d
iff

er
en

ce
s

is
re

je
ct

ed
,

th
e

p
o
st

-h
o
c

H
o
lm

’s
p

ro
ce

d
u

re
is

u
se

d
fo

r
p

a
ir

w
is

e
co

m
p

a
ri

so
n

s
w

it
h

C
l
a
ss
y

a
s

co
n
tr

o
l.
A
U
C

a
ll

is
th

e

A
U

C
co

m
p

a
ri

so
n

w
it

h
a
ll

a
lg

o
ri

th
m

s
(S

V
M

in
cl

u
d

ed
)

o
f

T
a
b

le
4

a
n

d
A
U
C

r
u
le
s

is
th

e
A

U
C

co
m

p
a
ri

so
n

o
f

a
ll

tr
ee

-
a
n

d
ru

le
-b

a
se

d
a
lg

o
ri

th
m

s
(S

V
M

ex
cl

u
d

ed
)

o
f

T
a
b

le
5
.
p

re
p

re
se

n
ts

th
e

p
-v

a
lu

e
o
b

ta
in

ed
fo

r
ea

ch
sp

ec
ifi

c
te

st
,
R

th
e

re
je

ct
io

n
o
f
H

0
—

n
u

ll
h
y
p

o
th

es
is

.
N

o
te

th
a
t

n
o
t

a
ll

a
lg

o
ri

th
m

s

ca
n

b
e

te
st

ed
fo

r
a
ll

m
ea

su
re

s,
th

u
s
k

sh
o
w

s
th

e
n
u

m
b

er
o
f

a
lg

o
ri

th
m

s
te

st
ed

fo
r

ea
ch

m
ea

su
re

.

39

6.6. Overfitting

To study overfitting, we compared the averages of the absolute difference be-

tween the AUC values in the training and test set over 10 times repeated 10-folds

for each algorithm. The results can be seen in Table 7. In general Classy, to-

gether with SVM, seem to be the most consistent algorithms in obtaining the

lowest values. The usual performance of Classy is 5% or lower, 12 out of 17

times, except in the case of hepatitis were it got 13%, which was the best value

after SVM. SBRL is very consistent, clearly achieving the lowest values for bi-

nary datasets, however this can be explained by its more conservative choice

of rules and thus lower AUC on the test set as shown in Table 4. Compar-

ing with all rule- and tree-based models, Classy obtained the lowest ranking

for multiclass datasets, being, from these ones, the algorithm that less overfits

overall.

6.7. Runtime

All runtimes are averages over ten times repetitions of ten folds, run on a 64-

bit Windows Server 2012R2, with Intel Xeon E5-2630v3 CPU at 2.4GHz and

512GB RAM. Runtimes include parameter tuning where applicable, and candi-

date mining for Classy and SBRL.

The results are depicted in Figure 4. CART, C5.0, JRip and FURIA are the

fastest, with most runtimes under 1 minute with Classy being at maximum one

order of magnitude slower. Comparing to SBRL, Classy is 10 times faster, even

though it considers around 100 times more candidates than this and performs

better in terms of AUC. The worst runtimes were obtained for SVM, due to its

costly grid search.

It should be noticed that reducing the candidate set size of Classy would

have an exponential reduction in its runtimes without much deterioration of its

classification performance, as can be seen in Figures 3b and 3d.

6.8. Discussion

From the classification and interpretability results of Table 4 and 5 it can be

seen that Classy is able to provide a good trade-off between classification per-

40

|AUCtrain − AUCtest|

datasets Classy SBRL JRip CART C5.0 FURIA SVM

hepatitis 0.13 0.16 0.19 0.14 0.21 0.22 0.13

ionosphere 0.06 0.05 0.07 0.04 0.05 0.08 0.04

horsecolic 0.06 0.06 0.08 0.06 0.09 0.08 0.10

cylBands 0.07 0.06 0.09 0.11 0.18 0.13 0.12

breast 0.02 0.02 0.02 0.02 0.02 0.02 0.02

pima 0.06 0.05 0.05 0.06 0.07 0.05 0.05

tictactoe 0.01 0.03 0.01 0.02 0.02 0.00 0.00

mushroom 0.00 0.00 0.00 0.00 0.00 0.00 0.00

adult 0.01 0.00 0.01 0.00 0.01 0.01 0.03

rank 3.6 2.7 4.4 4.2 5.2 4.3 3.6

iris 0.02 0.02 0.02 0.02 0.04 0.01

wine 0.03 0.05 0.04 0.04 0.03 0.00

waveform 0.02 0.02 0.02 0.03 0.02 0.02

heart 0.05 0.04 0.07 0.15 0.04 0.06

pageblocs 0.00 0.00 0.00 0.00 0.00 0.00

led7 0.01 0.01 0.01 0.01 0.01 0.01

pendigits 0.00 0.01 0.00 0.00 0.01 0.00

chessbig 0.00 0.02 0.00 0.02 0.00 0.00

rank 2.4 4.8 4.4 4.1 3.6 1.8

Table 7: Overfitting average results (10 times repeated 10-fold crossvalidation) using the

absolute difference between AUC performance in training and test sets as measure, per fold,

for each algorithm and each dataset. Rank gives the average rank of each algorithm for binary

and multiclass datasets. Note that SBRL does not have a values for multiclass datasets.

formance and rule list size. This is particularly the case for multiclass datasets

such as chessbig, where classical algorithms like JRip find a model with double

the number of rules, or in the case of mushroom, where CART and C5.0 find

more complex models with the same performance. It is interesting to notice

that Classy performs better in terms of AUC than accuracy. This shows that

when it makes a wrong prediction it does so with a small probability, which is

reassuring. Moreover, Classy has only one hyperparameter — its candidate set

— which its tuning is hardly needed as the algorithm has no problem in dealing

with large numbers of candidates. This is quite different from the extensive

tuning done for the other methods. It is important to observe that all methods

41

he
pa

titi
s

ion
osp

he
re

ho
rse

col
ic

cyl
Ban

ds
bre

astpim
a

tic
tac

toe

mush
roo

m
ad

ult iriswine

wav
efo

rm
he

art

pa
ge

blo
cs led

7

pe
nd

igit
s

che
ssb

ig

datasets

10 3

10 2

10 1

100

101

102

103
ru

nt
im

e
(m

in
.)

Classy
SBRL
CART
C5.0
JRip
FURIA
SVM

Figure 4: Average runtime per fold in minutes for each algorithm and each dataset. The

datasets are ordered first by the number classes and then by number of samples (ascending).

The vertical dashed line separates binary (to the left) from multiclass datasets. Note that

SBRL does not have a runtime for multiclass datasets.

except for Classy were tuned.

More importantly, in the set of Figures 3, it is shown that larger candidate

sets do not result in worse models, as our formalization in terms of the MDL

principle is well-suited to avoid overfitting without the need for cross-validation

and/or parameter tuning. In other words, Classy is insensitive to its only

parameter — its candidate set — making it virtually parameter-free. This is a

big advantage, as one can simply run Classy on all training data with as many

candidates as possible, without worrying about any parameters. It also means

that all training data can be used for training, which is important in case of

small data: no data needs to be reserved for validation.

From Figure 2 we can observe that better compression corresponds to better

42

classification, which is a strong empirical validation of our formalization. As

expected, normalized gain is clearly the best heuristic to use in combination

with our greedy rule selection strategy, as it results in better classifiers for 88%

of the datasets.

From the runtimes of Figure 4, it can be seen that Classy runtimes are slower

by an order of magnitude than other (fast) algorithms, such as C5.0, CART,

and JRip, and similar to SBRL. This is expected for the size of candidate sets

used in our experiments, as can be seen in Table 3.

In terms of classification and interpretability, comparing the average ranking

with other rule- and tree-based methods in Table 5, it is shown that Classy

performs equally well while also able to find rule lists with less conditions,

without any parameter tunning. CART creates models with fewer rules that

have more conditions per rule, while C5.0 has a high AUC at the expense of

over-complex rules. FURIA has a better performance in terms of both standard

and balanced accuracy, and worst in terms of AUC, which is expected as it is not

a probabilistic classifier. Also, it is hard to compare its interpretability as all its

rules can interact with each other, generating a much larger equivalent rule list

than Classy. SBRL on the other hand seems to be able to find simple models

that underperform in terms of AUC compared with Classy, which can be either

a result of its formalization or because it cannot use larger candidate sets. The

experiments also revealed that the Poisson distribution used as prior in SBRL,

for the number of conditions per rule and the number of rules, creates tight

constraints from which the results hardly deviate. Our results suggest that if the

‘optimal’ values for these hyperparameters are not known in advance, the best

model may not be found. An indicative example of this is the tictactoe dataset in

Table 4, a deterministic dataset for which SBRL can only find the right amount

of rules and logical conditions per rule when given these exact values in advance.

The results obtained with Classy demonstrate that using the universal prior

for integers alleviates this strong dependence on hyperparameter tuning.

In terms of overfitting, Table 7 shows that Classy has a tendency to select

models that generalize well and that are not overconfident in the training set.

43

It obtains low differences between training and test compared with the other

rule- and tree-based models.

7. Conclusions and future work

We proposed a novel formalization of the multiclass classification problem using

probabilistic rule lists and the minimum description length (MDL) principle.

Our problem formulation allows for parameter-free model selection and natu-

rally trades off model complexity with predictive accuracy, effectively avoid-

ing overfitting. To find solutions to this problem, we introduced the heuristic

Classy algorithm, which greedily constructs rule lists using the MDL-based

criterion.

We empirically demonstrated, on a variety of datasets, that Classy finds prob-

abilistic rule lists that perform on par with state-of-the-art interpretable clas-

sifiers with respect to predictive accuracy, despite the fact that some form of

hyperparameter tuning is done for all methods except for Classy. Moreover,

the models found by our approach were shown to be more compact than those

obtained by the other methods, which is expected to make them more under-

standable in practice. Finally, compression was shown to strongly correlate

with predictive accuracy, which can be regarded as an empirical validation of

the MDL-based selection criterion.

Directions for future work include, for instance, the following:

• Bridge the gap between both kinds of search methods used to learn rule

lists from data in a principled way, namely optimal strategies — accurate

but slow — and greedy methods — fast but imperfect.

• Extend our MDL formulation to other types of data and/or tasks, such as

continuous data and regression problems.

Acknowledgment

This work is part of the research programme Indo-Dutch Joint Research Pro-

gramme for ICT 2014 with project number 629.002.201, SAPPAO, which is

44

(partly) financed by the Netherlands Organisation for Scientific Research (NWO).

References

[1] Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules

between sets of items in large databases. In Acm sigmod record, volume 22,

pages 207–216. ACM.

[2] Alcala-Fdez, J., Alcala, R., and Herrera, F. (2011). A fuzzy association rule-

based classification model for high-dimensional problems with genetic rule

selection and lateral tuning. IEEE Transactions on Fuzzy systems, 19(5):857–

872.

[3] Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., and Rudin, C. (2017).

Learning certifiably optimal rule lists. In KDD’17. ACM.

[4] Aoga, J. O. R., Guns, T., Nijssen, S., and Schaus, P. (2018). Finding prob-

abilistic rule lists using the minimum description length principle. In DS’18.

[5] Bellodi, E. and Riguzzi, F. (2015). Structure learning of probabilistic logic

programs by searching the clause space. Theory and Practice of Logic Pro-

gramming, 15(2):169–212.

[6] Borgelt, C. (2003). Efficient implementations of apriori and eclat. In

FIMI’03: Proceedings of the IEEE ICDM workshop on frequent itemset min-

ing implementations.

[7] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classifi-

cation and regression trees. CRC press.

[8] Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010).

The balanced accuracy and its posterior distribution. In 2010 20th Interna-

tional Conference on Pattern Recognition, pages 3121–3124. IEEE.

[9] Budhathoki, K. and Vreeken, J. (2015). The difference and the norm – char-

acterising similarities and differences between databases. In ECMLPKDD’15,

pages 206–223. Springer.

45

[10] Cohen, W. W. (1995). Fast effective rule induction. In Machine Learning

Proceedings 1995, pages 115–123. Elsevier.

[11] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data

sets. Journal of Machine learning research, 7(Jan):1–30.

[12] Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of inter-

pretable machine learning. arXiv:1702.08608 [stat.ML].

[13] Fernandez, A., Lopez, V., del Jesus, M. J., and Herrera, F. (2015). Re-

visiting evolutionary fuzzy systems: Taxonomy, applications, new trends and

challenges. Knowledge-Based Systems, 80:109–121.

[14] Friedman, M. (1937). The use of ranks to avoid the assumption of nor-

mality implicit in the analysis of variance. Journal of the american statistical

association, 32(200):675–701.

[15] Fürnkranz, J., Gamberger, D., and Lavrač, N. (2012). Foundations of rule

learning. Springer Science & Business Media.

[16] Garćıa-Borroto, M., Mart́ınez-Trinidad, J. F., and Carrasco-Ochoa, J. A.

(2014). A survey of emerging patterns for supervised classification. Artificial

Intelligence Review, 42(4):705–721.

[17] Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and

Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.

[18] Grünwald, P. D. (2007). The minimum description length principle. MIT

press.

[19] Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scandinavian journal of statistics, pages 65–70.

[20] Hühn, J. and Hüllermeier, E. (2009). Furia: an algorithm for unordered

fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3):293–319.

46

[21] Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., and Baesens, B.

(2011). An empirical evaluation of the comprehensibility of decision table,

tree and rule based predictive models. Decision Support Systems, 51(1):141–

154.

[22] Iman, R. L. and Davenport, J. M. (1980). Approximations of the critical

region of the fbietkan statistic. Communications in Statistics-Theory and

Methods, 9(6):571–595.

[23] Jiménez, F., Sánchez, G., and Juárez, J. M. (2014). Multi-objective evo-

lutionary algorithms for fuzzy classification in survival prediction. Artificial

intelligence in medicine, 60(3):197–219.

[24] Kralj Novak, P., Lavrač, N., and Webb, G. (2009). Supervised descrip-

tive rule discovery: A unifying survey of contrast set, emerging pattern and

subgroup mining. Journal of Machine Learning Research, 10:377–403.

[25] Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). Interpretable decision

sets: A joint framework for description and prediction. In KDD’16. ACM.

[26] Lakkaraju, H. and Rudin, C. (2016). Learning cost-effective and inter-

pretable treatment regimes for judicial bail decisions. In NIPS 2016.

[27] Lakkaraju, H. and Rudin, C. (2017). Learning cost-effective and inter-

pretable treatment regimes. In Artificial Intelligence and Statistics.

[28] Letham, B., Rudin, C., McCormick, T. H., Madigan, D., et al. (2015).

Interpretable classifiers using rules and bayesian analysis: Building a better

stroke prediction model. The Annals of Applied Statistics, 9(3):1350–1371.

[29] Li, W., Han, J., and Pei, J. (2001). Cmar: Accurate and efficient classifica-

tion based on multiple class-association rules. In Data Mining, 2001. ICDM

2001, Proceedings IEEE International Conference on, pages 369–376. IEEE.

[30] Lou, Y., Caruana, R., and Gehrke, J. (2012). Intelligible models for classi-

fication and regression. In KDD’12, pages 150–158. ACM.

47

[31] Ma, B. L. W. H. Y. and Liu, B. (1998). Integrating classification and

association rule mining. In KDD’98.

[32] Molnar, C. (2018). Interpretable machine learning. A Guide for Making

Black Box Models Explainable.

[33] Polaka, I., Gašenko, E., Barash, O., Haick, H., and Leja, M. (2017). Con-

structing interpretable classifiers to diagnose gastric cancer based on breath

tests. Procedia Computer Science, 104.

[34] Provost, F. and Domingos, P. (2000). Well-trained pets: Improving prob-

ability estimation trees.

[35] Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

[36] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Why should i trust

you?: Explaining the predictions of any classifier. In KDD’16, pages 1135–

1144. ACM.

[37] Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors: High-precision

model-agnostic explanations. In Proceedings of the Thirty-Second AAAI Con-

ference on Artificial Intelligence (AAAI).

[38] Rissanen, J. (1978). Modeling by shortest data description. Automatica,

14(5).

[39] Rissanen, J. (1983). A universal prior for integers and estimation by mini-

mum description length. The Annals of statistics, pages 416–431.

[40] van Leeuwen, M. and Galbrun, E. (2015). Association discovery in two-view

data. IEEE Transactions on Knowledge and Data Engineering, 27(12).

[41] van Leeuwen, M. and Vreeken, J. (2014). Mining and using sets of patterns

through compression. In Frequent Pattern Mining, pages 165–198. Springer.

[42] Vreeken, J., van Leeuwen, M., and Siebes, A. (2011). Krimp: mining

itemsets that compress. Data Mining and Knowledge Discovery, 23(1):169–

214.

48

[43] Wang, J. and Karypis, G. (2005). Harmony: Efficiently mining the best

rules for classification. In Proceedings of the 2005 SIAM International Con-

ference on Data Mining, pages 205–216. SIAM.

[44] Wang, T., Rudin, C., Velez-Doshi, F., Liu, Y., Klampfl, E., and MacNeille,

P. (2016). Bayesian rule sets for interpretable classification. In Data Min-

ing (ICDM), 2016 IEEE 16th International Conference on, pages 1269–1274.

IEEE.

[45] Webb, G. I. (2007). Discovering significant patterns. Machine Learning,

68(1):1–33.

[46] Yang, H., Rudin, C., and Seltzer, M. (2017). Scalable bayesian rule lists.

In Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 3921–3930. JMLR. org.

[47] Zeng, J., Ustun, B., and Rudin, C. (2017). Interpretable classification

models for recidivism prediction. Journal of the Royal Statistical Society:

Series A (Statistics in Society), 180(3).

[48] Zhang, X., Dong, G., and Ramamohanarao, K. (2000). Information-based

classification by aggregating emerging patterns. In IDEAL, pages 48–53.

Springer.

[49] Zimmermann, A. and Nijssen, S. (2014). Supervised pattern mining and

applications to classification. In Frequent Pattern Mining. Springer.

49

	Introduction
	Related work
	Rule-based models
	Pattern mining
	MDL-based data mining

	Multiclass classification with rule lists
	Probabilistic rule lists
	Parameter estimation

	MDL for multiclass classification
	Model encoding
	Data encoding

	The Classy algorithm
	Separate-and-conquer greedy search
	Compression gain
	Candidate generation
	Finding good rule lists
	Complexity

	Experiments
	Compression versus classification
	Candidate set influence
	Classification performance
	Interpretability
	Statistical significance testing
	Overfitting
	Runtime
	Discussion

	Conclusions and future work

