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Abstract. Recent work has shown that significant performance gains
over state-of-the-art CMA-ES variants can be obtained by a recombi-
nation of their algorithmic modules. It seems plausible that further im-
provements can be realized by an adaptive selection of these configura-
tions. We address this question by quantifying the potential performance
gain of such an online algorithm selection approach. In particular, we
study the advantage of adaptive CMA-ES variants on the functions F1,
F10, F15, and F20 of the BBOB test suite. Our research reveals that
speedups of up to 47% out of the 4608 tested static configurations might
be possible for these functions. Quite notably, significant performance
gains might already be possible by adapting the configuration only once.
More precisely, we show that for the tested problems such a single con-
figuration switch can result in performance gains of up to 22%.With such
a significant indication for improvement potential, we hope that our re-
sults trigger an intensified discussion of online algorithm configuration
for CMA-ES variants.

Keywords: Continuous Black-Box Optimization - CMA-ES - Online
Algorithm Configuration

1 Introduction

Black-box optimization algorithms are an important field of research due to their
direct applicability to many problems and their long success history. Many differ-
ent algorithms are continuously being developed, each with its own performance
characteristics to make it better suited to certain problems or problem classes.

Such optimizers typically use online adaptation of parameters such as step
size or population size. A common one is the CMA-ES by Hansen et al. [5] and
its (B)IPOP derivatives [II7]. This adaptation behavior allows a single algorithm
to behave differently at different points in time during the optimization process,
usually transitioning from exploration to exploitation.

When using specific optimizers that are tailored to the specific features of
the optimization problem at hand, the efficiency is typically improved. Such
algorithms provide improved convergence rate and/or quality of the final solu-
tion found for these problems, but often perform worse than average on other
problems. This limits their general applicability and makes it less likely that
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non-specialists will be aware that the tailored algorithm exists as an option for
their particular problem. Furthermore, this also means that many algorithmic
variants are not commonly combined with each other, as they are only compared
with standard algorithms upon their introduction.

In an effort to explore more of this underlying algorithm combination space,
a modular CMA-ES implementation for eleven such variants has been proposed
in [12]. This framework easily allows for 4 608 different combinations to be tested
and compared, as has been done in [T2|T3].

We explore the potential gains if we do not just adapt some parameters of
the optimization, but instead adapt the structure of the optimizer. This would
mean that we could use one optimizer configuration that is good during the
earlier stage of optimization, and later switch to a different one that performs
better in the later stage. Imagine for example the optimization process of the
multi-modal Rastrigin function. The search has to avoid many local optima at
first, but effectively only has to solve the Sphere function once the area of the
global optimum has been identified.

A simple example of the kind of performance improvement, constructed for
illustration purposes, is shown in Figure[I] While this example only uses a single
configuration switch, the switch can theoretically be applied at every generation.
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Fig. 1: An example of adaptive performance. The vertical line marks where the
compound curve switches from e to z? instead. The two horizontal lines show
the final values of the normal best (x2) and compound functions in this range.
The difference between these is the gained improvement, &~ 17% in this case.

In this paper, we analyze the potential speed-up that can be gained from
performing such configuration switches based on learning from the convergence
history of 4608 CMA-ES-based algorithms. In Section [2| we give a short intro-
duction of the modular CMA-ES framework that is used to create the 4608
CMA-ES configurations. Section [3] defines the procedure applied to calculate
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the potential speed-up, with Section [4] discussing the results. Finally, Section
concludes this paper and lists some potential avenues for future research.

2 The Modular CMA-ES

The modular CMA-ES framework [12] has been developed to facilitate the test-
ing and exploration of arbitrary combinations of algorithmic variations of the
CMA-ES. In the following, such algorithmic variations are called configurations.
Each configuration is built-up of eleven different modules that can be enabled
or disabled independently of each other. As two of the possible modules have
three options rather than two, this allows for 27 - 32 = 4608 different possi-
ble configurations. A list of the modules used in this framework is provided in
Table [

Table 1: Overview of the available ES modules in the modular CMA-ES frame-
work. For most of these modules the only available options are off and on,
encoded by the values 0 and 1. For quasi-Gaussian sampling and increasing pop-
ulation, the additional option is encoded by the value 2. The entries in row 9,
recombination weights, specify the formula for calculating each weight w;.

Module name 0 (default) 1 2
1 Active Update [10] off on -
2 Elitism (1, N) (u+X) -
3 Mirrored Sampling [4] off on -
4 Orthogonal Sampling [14] off on -
5 Sequential Selection [4] off on -
6 Threshold Convergence [11] off on -
7 TPA [0] off on -
8 Pairwise Selection [2] off on -
1y log(i
9 Recombination Weights W % -
S,
10 Quasi-Gaussian Sampling [3] off Sobol Halton
11 Increasing Population [TI[7] off IPOP BIPOP

3 Data Processing

3.1 Generation and Pre-Processing of the Data

We quantify the theoretical potential of adaptive configuration selection for the
four functions F1, F10, F15, and F20 from the BBOB benchmark suite [9], and
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for each of these functions we focus on dimensions 5 and 20. Each function is cho-
sen to represent one of the four subgroups from the BBOB suite. For generating
and preprocessing the performance data, the following steps are executed:

Step 1: Generation of runtime data for each of the 4,608 configura-
tions. For each (F=function, d=dimension) pair we collect running time data
from 5 independent runs on 5 different instances, resulting in a total of 25 runs.
The BBOB test suite stores the function value of a best-so-far search point after
every improvement. The allocated budget is 10* - d per run. Since we collect data
for each of the 4,608 configurations, this gives us about 4 GB of running time
data for each (F,d) pair.

Step 2: Computation of average hitting times AHT. Following the
logic of BBOB, we compute an average hitting time for each of the I' = 51
target precisions {102, 1018, ..., 10778, 10780}, defined as ¢; = 102~ (=102
i€{1,2,..., I'}. For every function F, dimension d, configuration C, and target
precision ¢ this is done as follows: Let 0 < s < 25 be the number of successful
runs, i.e., the number of runs of configuration C' that have reached the target
precision ¢ on the (F,d) pair. The first point in time in which the function has
been at most ¢ is referred to as the first hitting time. When s = 25, i.e., when
all runs have been successful, the average hitting time AHT(F, d, C, ¢) is simply
the average of the hitting times. When s < 25, at least one of the runs was not
able to reach ¢ and the AHT is set to co. As we will usually fix the function F
and dimensionality d, we write AHT(C, ¢) as a shorthand for AHT(F, d, C, ¢).

We choose not to use more sophisticated methods such as simulated AHT
or Estimated Running Time (ERT) as defined in [§] to incorporate these unsuc-
cessful runs into the AHT. These methods artificially increase the hitting time
by substituting the unsuccessful runs with (multiples of) the maximum budget
to account for the uncertainty of success. This makes sense when considering
the entire runtime performance of a configuration, but is ignored when only
considering ‘sections’ of performance.

Note further that it is also not very suitable to simply ignore the unsuccessful
runs and to average over all available individual hitting times, because this typ-
ically leads to non-monotonic average hitting times for consecutive targets. The
importance of this will become clear in the next step. Instead, we deliberately
choose to ignore any configuration that was not successful in all 25 runs for the
desired ¢. This absolves us of the associated uncertainty at the cost of reducing
the effective size of our dataset.

Step 3: Computation of segmented average hitting time sAHT. We
next compute from the AHT(C, ¢) values an indicator for the performance of
the different configurations in the function value segments S; = (¢; — 1, ¢;]. For
each i € {1,...,I'} let ¢; be the i-th target precision, with ¢y = co such that
Segment S; = (00, 10?). This segmented average hitting time of configuration C
in segment S; for function, dimension pair (F,d) is defined as

sAHT(C,i) = AHT(C, ¢;) — AHT(C, ¢;_1) (1)
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i.e., difference in average hitting times. We can assume that sAHT(C,i) > 0
since the average hitting time is monotonically increasing by construction:

Note here that if we were to ignore unsuccessful runs, we can easily end up with
negative SAHT values, as shown in Figure [2] which motivates our choice of the
AHT measure.

original data mean of valid data consecutive differences
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Fig.2: Example of non-monotonicity causing negative SAHT values. The orig-
inal, monotonically increasing data, consists of four runs, one of which is not
successful for targets 4 and up. If an average is taken of all valid data points,
the unsuccessful run increases the average for targets 0-3, but the average drops
once the unsuccessful run is no longer taken into account. The difference, or
SAHT, between targets 3 and 4 becomes negative in this case. As this would
imply earning more budget rather than spending it, we cannot use any data
from that point onwards and discard it.

3.2 Constructing optimal adaptive configurations

The full convergence behavior of a configuration C' towards final target ¢ can
be defined based on the sAHT measure defined above:

r
AHT(C,¢r) = Y sAHT(C, ). (2)

=1

Maximally adaptive We can adapt Equation to replace any static config-
uration C' by a sequence of configurations C = {Cy, Cs, ..., Cr}:

r
AHT(C, ¢r) = > sAHT(C;,i). (3)

i=1
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If we then pick this sequence C such that

Cope = {C; | i € {1,...,I'},C; = argmin (SAHT(C, i)} (4)
C

then we can guarantee by construction that
AHT(Copt, ¢r) < AHT(C, ¢r) (5)

for any sequence C of configurations.

In other words, this means that we consider C,p¢ to be an algorithm that
chooses its internal configuration for each segment S; to be precisely the config-
uration C; that has the smallest SAHT for that segment.

Single split Naturally, this maximally adaptive algorithm is practically quite
infeasible for various reasons. However, by restricting our choice of C we can
create a more feasible alternative that still outperforms any single original con-
figuration C.

Let C be a sequence (C1,Ca,...,Cr) such that: C; = Cy Vi€ {1,...,s} and
C;=Cr Vie{s+1,...,I'}, where 1 < s < I is the split index. This represents
an adaptive approach where a single configuration switch occurs during the
runtime, namely when reaching ¢,. For a given split s, we can then find Cy and
Cr that minimize the AHT for their respective sequence of segments.

By repeating this for all possible splits, an optimal split s with corresponding
configurations C; and C can be computed from the dataset. By appropriating
the arg min notation, we can write this as follows:

s r
(C1,Cr,s) = argmin (Z sAHT(Cy, ¢;) + Z sAHT(C’n(bi)) (6)

G108 \i=1 i=st1
or in terms of AHT:

(C1,Cr,s) = acrgénin (AHT(C4, ¢s) + (AHT(Cr, ¢r) — AHT(Cr, ¢5))) (7)

In words: we consider an adaptive algorithm that is split at the end of segment
Si, such that configuration C performs best for Sy,...,S; and C performs best
for S;y1,...,Sp and their combined AHT is minimal again. In the worst case
scenario, C7 = Cr and we do not get any improvement.

4 Results

4.1 Maximally Adaptive

Results for the maximally adaptive strategy are listed in Table[2] where the rela-
tive improvement is calculated as 1 — Adaptive/Static. They show improvements
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Table 2: Results of only successful configurations. The Static and Adaptive
columns indicate the AHT values. Column ¢ lists the smallest target values
for which the shown AHT values were obtained. Relative improvement r is cal-
culated as 1 — Adaptive/Static.

d F ¢ Static ~ Adaptive 7

5 1 10780 412.00 218.05 0.471
5 10 10780 1437.08 832.00 0.421
5 15 10789 14812.72  9220.80 0.378
5 20 107%2 14535.16  10951.92 0.247
20 1 107890 1269.05  1058.45 0.166
20 10 10780 16565.48 11135.00 0.328
20 15 10%¢ 45279.08  26249.16 0.420
20 20 10%2 14476.76  12829.40 0.114

ranging from 11 up to 47%. It must be noted, however, that, given the budget of
10% - d, 5d F20, 20d F15 and 20d F20 have not reached the final target of 10~2.
The listed results are only up to the listed target ¢.

Although the results are impressive, they seem unreliable. After all, CMA-ES
performs rather well on the sphere function as-is, so an expected speed-up of 47%
for 5d F1 is unrealistic. The explanation for this lies in the fact that CMA-ES
are still stochastic processes. If we have a number of configurations that perform
similarly over the entire runtime, some local variance is to be expected. As
we then decrease the size of each segment S;, we end up cherry-picking sAHT
values that are small by chance rather than because of inherent information
they contain. This means we should be wary of over-fitting when constructing
AHT values for maximally adaptive strategies based on many configurations
with similar performance.

Having said this, these results still provide an upper bound for the improve-
ment that may be obtained by making better use of the available configuration
space.

4.2 Single split

Table (3] lists the results when only considering a single configuration switch.
Potential improvement ranges from 3 up to 22% in this case. The reached targets
are the same as for the maximally adaptive method. Convergence behavior of
these results is shown in Figures [3| and [4]

For the easiest F1 functions, these improvements are much smaller than in
the maximally adaptive setting: 6.9% versus 47.1% and 3% versus 16.6% for
5d and 20d F1, respectively. This much lower improvement combined with the
convergence behavior as shown in Figure |3 supports the explanation that these
improvements for F1 are most likely due to random variance. When comparing
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Table 3: Results of only successful configurations. The Static and Adaptive
columns indicate the AHT values. Relative improvement r is calculated as
1 — Adaptive/Static. Split indicates the target value ¢; after which we switch
from one configuration to the other. The final three columns and C show the
representation for the static best configuration and the configurations Ci,Cr
that make up the first and second part of the adaptive approach, respectively.

This representation can be decoded using Table m

d F Static  Adaptive r Split Static C 4 Cr

5 1 412.00 383.70 0.069 10722 00110011010 10110111020 00110011011
5 10 1437.08 1207.12 0.160 10°2 11000110022 01001110120 01101000012
5 15 14812.72 11524.24 0.222 10°* 00110011011 00110000001 00001011011
5 20 14535.16 11628.36 0.200 10°° 01010101022 01110011011 00100001021
20 1 1269.05 1231.40 0.030 10~*® 00110110021 00110110022 00110110021
20 10 16565.48 15003.72 0.094 10'-® 00001000010 00011000011 00001101011
20 15 45279.08 42020.80 0.072 10°® 00111000001 00111000001 00101000011
20 20 14476.76 12942.96 0.106 10°* 00010001022 11100111001 00010001022

the representations for 20d F1 for example, we can see that the best normal
configuration is the same as that for the second part of the optimization process,
and that the configuration for the first part only differs in the final module:
IPOP instead of BIPOP, which makes no difference when optimizing the sphere
function.

For more difficult functions such as 5d F10 and F15 however, the single
split method already shows a large potential improvement of over a third to a
half of the upper bound established by the maximally adaptive method. The
improvement is clearly visible in the convergence behavior. The convergence
of the first part follows that of a rather successful configuration, which does
not perform best overall, while for the second part, the behavior of a different
configuration is followed. This second configuration may take longer to exhibit
this beneficial search behavior, but because of the switch, we can disregard this
initial delay and use its good performance in the latter half of the optimization
process to (significantly) beat the best static configuration.

On the other hand, the results for 5d F20, 20d F15 and 20d F20 are not
very informative as most target values are not reached. For these functions, even
higher budgets are required for CMA-ES-based optimizers to reach the target
value of 1078,

4.3 Discussion

As already noted in Section[4.1] because the data has been created by a stochastic
process, measurement uncertainty has to be taken into account. Although we
have tried to reduce its influence by using an average over 25 runs and discarding
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Fig. 3: Convergence behavior of configurations listed in Table@ These plots show
AHT(F,d,C, ¢), the average number of evaluations required for a configuration
C to reach a target value ¢. The vertical line indicates the location of the optimal
split. The convergence labeled Adaptive consist of the behavior of configuration
C1 before the split, and the behavior of configuration C'r afterwards. If none
of the configurations were successful in all 25 runs, there is no data for those
convergence targets ¢.

any AHT values for which not all 25 were successful, some variance remains. This
is very visible in the analysis of F1 (sphere function).

Sander: TODO The results of 5d F10 shows a very clear knee-point at the
split, after which all three original configurations start performing better, i.e.
needing fewer evaluations to reach the next targets. This change in performance
is not the same however, which is exploited by the compound configuration, con-
firming the intuition motivating this research. As the behavior of the algorithms
changes by entering a sub-space of the fitness landscape with particular proper-
ties, a structural change in the algorithm can provide even better performance.

A practical caveat, however, is that a fast but less successful configuration
such as ‘part 1’ in 5d F15 as seen in Figure [d| may reach its best target value ¢ by
exploiting a local optimum that is not necessarily close to the global optimum.
In such cases, continuing the search with a different configuration will not result
in the speed-up demonstrated in this paper, but rather in a slow-down as the
algorithm would have to escape the local optimum, if possible at all, before
finding the global optimum on its own.
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Fig.4: Convergence behavior of configurations listed in Table@ These plots show
AHT(F,d,C, ¢), the average number of evaluations required for a configuration
C to reach a target value ¢. The vertical line indicates the location of the optimal
split. The convergence labeled Adaptive consist of the behavior of configuration
C1 before the split, and the behavior of configuration C'r afterwards. If none
of the configurations were successful in all 25 runs, there is no data for those
convergence targets ¢.

5 Conclusion and Future Work

In this paper we have shown that it is possible to empirically determine up-
per bounds for the possible speed-up when considering structurally adaptive
optimization algorithms. Although these are heavily influenced by measurement
variance for easy functions such as sphere, results for other functions support the
idea that improvements of 5-20% are already viable when switching algorithm
configuration once during the optimization process. We hope this research will
inspire further investigations into online structural adaptation of optimization
algorithms.

It would be interesting to construct a statistical analysis of the data to cal-
culate a likelihood probability of obtaining improvements of this magnitude by
random chance. Additionally, expanding the set of available algorithm configu-
rations could lead to new combinations that could provide even further improve-
ment.

Finally, the real test of the presented approach would be to run the observed
adaptive configurations in a white-box setting, such that the switch can be made
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with full information to see if the theoretical speed-up holds true. When this has
been confirmed, this can be extended to black-box settings for which online
detection methods have to be developed.
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