
Towards a Theory-Guided Benchmarking Suite
for Discrete Black-Box Optimization Heuristics:
Profiling (1 + λ) EA Variants on OneMax and

LeadingOnes

Carola Doerr1, Furong Ye2, Sander van Rijn2, Hao Wang2, and
Thomas Bäck2

1Sorbonne Université, CNRS, LIP6, Paris, France
2LIACS, Leiden University, Leiden, The Netherlands

July 17, 2018

Abstract

Theoretical and empirical research on evolutionary computation meth-
ods complement each other by providing two fundamentally different ap-
proaches towards a better understanding of black-box optimization heuris-
tics. In discrete optimization, both streams developed rather indepen-
dently of each other, but we observe today an increasing interest in rec-
onciling these two sub-branches. In continuous optimization, the COCO
(COmparing Continuous Optimisers) benchmarking suite has established
itself as an important platform that theoreticians and practitioners use
to exchange research ideas and questions. No widely accepted equivalent
exists in the research domain of discrete black-box optimization.

Marking an important step towards filling this gap, we adjust the
COCO software to pseudo-Boolean optimization problems, and obtain
from this a benchmarking environment that allows a fine-grained empir-
ical analysis of discrete black-box heuristics. In this documentation we
demonstrate how this test bed can be used to profile the performance
of evolutionary algorithms. More concretely, we study the optimization
behavior of several (1 + λ) EA variants on the two benchmark problems
OneMax and LeadingOnes. This comparison motivates a refined analysis
for the optimization time of the (1 + λ) EA on LeadingOnes.

1 Introduction
After a long phase of around 20 years in which mathematical and empirical
research on evolutionary algorithms (EAs) seemed to have advanced more or
less independently of each other, we observe today a steadily growing interest
to reconcile these two different methodologies. This interest is spurred by the
awareness that certain advantages of one approach cannot be compensated for
by the other: While theoretical work has the advantage of universal bounds

1

that are proven with mathematical rigor, empirical research contributes con-
crete numbers (as opposed to the predominant asymptotic bounds derived by
theoretical approaches) and can provide results for complex problems or algo-
rithms that do not admit a stringent mathematical analysis. This way, both
research methods offer a different view on the working principles of evolution-
ary computation (EC) methods. Bringing these two streams closer together has
the potential to create a much more complete picture than what any of the two
approaches can deliver individually.

In continuous optimization, a strong promoter for joint projects and discus-
sion is the COCO (COmparing Continuous Optimisers) platform, which offers
a well-designed and widely accepted benchmarking environment for derivative-
free continuous black-box optimizers. The affiliated BBOB workshops have
established themselves as a prime platform for theoreticians and practitioners
to exchange novel ideas and research questions. For discrete black-box opti-
mization, unfortunately, no initiative of equivalent reputation exists.

With this work we wish to make an important step towards establishing
a well-designed benchmarking environment for pseudo-Boolean black-box op-
timization. To this end, we build on the freely available COCO software [13]
(cf. [12] for a documentation of this framework) and adapt it to discrete bench-
mark problems. We summarize in this work how this framework can be used to
generate novel and—as we shall see—sometimes quite surprising findings that,
in turn, inspire new research directions.

To demonstrate the functioning of the benchmarking platform, we investi-
gate in this work the performance of different (1+λ) EA variants. These variants
differ in their parameter settings, i.e., in the offspring population size λ and the
mutation rates p used by the variation operator. Apart from (1+λ) EA variants
with static parameter settings, we also investigate the performance profiles of
four different algorithms with self-adjusting parameter choices.

To provide a comparison that is meaningful for theoreticians and practition-
ers alike, we respond to a recent critique of the way EAs are typically evaluated
in the theory of EC literature [6] and regard in our comparison (1 + λ) EA
variants that do not create offspring that are identical to their parents. For our
static and noiseless benchmark problems, such offspring would not provide any
new information to the algorithm, and since a plus selection scheme is in place,
they do also not bring any other benefit to the optimization process. In our
(1 + λ) EA>0 variants, we therefore ensure that every offspring differs from the
parent in at least one bit.

1.1 The Role of Benchmarking in EC
Benchmarking aims at supporting practitioners in choosing appropriate algo-
rithms for a given optimization problem through a systematic empirical com-
parison of different algorithmic techniques. Typical research questions that can
be addressed by a benchmarking approach concern
– the scalability of performance in terms of problem dimension or decision vari-

ables,
– the optimization behavior across different benchmark functions,
– the dependence of performance on selected problem and instance features, and
– the sensitivity of a heuristic with respect to small changes of its parameters.

2

http://coco.gforge.inria.fr/

For theoreticians, benchmarking can be an essential tool for the enhance-
ment of mathematically-derived ideas into techniques that can be beneficial for
a broad range of problems. It can also be used to identify reasonable parameter
settings for which performance bounds can be proven. Benchmarking is also
an important tool to communicate mathematical research results, as it can be
more appealing to look at performance plots than to compare mathematical
formulae. Finally, benchmarking can also serve as a source for interesting re-
search questions. We present such an example in Section 4.3, where we prove
refined runtime bounds for the (1+λ) EA on the LeadingOnes problem. This
result is clearly motivated by the observation that the (1 + 1) EA>0 and the
(1 + 50) EA>0 show a very similar performance in our empirical comparisons.

1.2 Performance Criteria
Most theoretical works use total expected optimization time, i.e., the average
number of function evaluations needed to identify an optimal solution, as the
only performance criterion. This measure is very coarse, as it reduces the whole
optimization process to a single number. It has therefore been suggested in [19]
to complement optimization time with a more fine-grained performance mea-
sure. Jansen and Zarges [19] suggested to adapt a fixed-budget perspective, and
to measure the expected quality of a solution that can be obtained within a
given computational budget. A complementary performance measure, which is
more commonly used for algorithm comparison, are fixed-target results, which
measure the expected number of function evaluations needed to identify solu-
tions of a certain target quality. This perspective extends optimization time to
arbitrary target values. Our benchmarking tool, just like COCO, provides both
these performance measures.

1.3 Comment on the Benchmark Problems
At the current state, our benchmarking environment is set up for the com-
parison of black-box optimizers on a few selected benchmark problems, such
as linear functions, functions with a plateau (so-called jump-functions), or the
non-separable LeadingOnes functions. This selection is clearly biased towards
functions that are analyzable by mathematical means. We will extend this se-
lection significantly in the near future.

We have chosen to present in this work a comparison of performance profiles
for the two functions OneMax and LeadingOnes. For these two problems
a number of theoretical results exist, and one may have the feeling that these
problems are quite well understood already. Our empirical comparison shows
nevertheless some surprising effects, which have inspired us to prove a more
precise runtime bound for the performance of the (1+λ) EA on LeadingOnes.
The empirical performance profiles also raise a number of other interesting ques-
tions that may be useful to address by a mathematical approach.

We recall that theoreticians regard simple benchmark functions like One-
Max and LeadingOnes in the hope that, among other reasons,
– they give insights into how the studied algorithms perform on the easier parts

of a difficult optimization problem,
– in order to understand some basic working principles of the algorithms, which
can then be used for the analysis of more complex problems, more complex

3

algorithms, and for the development of new algorithmic ideas,
– the theoretical investigations (which even for seemingly simple algorithms
and problems can be surprisingly complex) triggers the development of new
analytical tools that can be used for more complex tasks, and

– very precise mathematical statements can be obtained, which allow to deter-
mine, for example, how the chosen parameter values influence the performance
of an algorithm, or how these parameters can be controlled in an optimal way.
We furthermore note that even for OneMax and LeadingOnes, despite

being studied since the very early days of theory of evolutionary computation,
several unsolved problems exist, many of which are of seemingly simple nature
such as the optimal dynamic mutation rate of the (1 + 1) EA for OneMax.
We are confident that our benchmarking environment will be a key enabler
to strengthen existing results, to guide researchers towards interesting research
questions, and, ultimately, towards high-performing optimization techniques.

2 Summary of Algorithms
Two fundamental building blocks of evolutionary algorithms are global variation
operators and populations. Global variation operators are sampling strategies
that are characterized by the property that every possible solution candidate has
a positive probability of being sampled within a short time window, regardless
of the current state of the algorithm. Standard bit mutation is an example of
a global mutation operator. From a given input string x ∈ {0, 1}n, standard
bit mutation creates an offspring by flipping each bit in x with some positive
probability 0 < p < 1, with independent decisions for each bit. For any x, y the
probability to sample y from x is thus pH(x,y)(1− p)n−H(x,y), where H(x, y) is
the number of bits in which x and y differ (Hamming distance). This probability
is positive even for search points that are very far apart. The motivation to use
global sampling strategies is to overcome local optima by eventually performing
a sufficiently large jump.

Storing information about the optimization process, maintaining a diverse
set of reasonably good solutions, and gathering a more complete picture about
the structure of the problem at hand are among the most important reasons
to employ population-based EAs. The first two objectives are served by the
parent population, which is the subset of previously evaluated search points that
are kept in the memory of the algorithm. The parent population is updated
after each generation. New solution candidates are sampled from it through the
use of variation operators. These points form the offspring population of the
generation. Non-trivial offspring population sizes address the desire to gather
more information about the fitness landscape before making any decision about
which of the points from the parent and offspring population to keep in the
memory for the next iteration.

It is very well understood that both the size of the parent population as
well as the size of the offspring population can have a significant impact on
the performance. Finding suitable parameter values for these two quantities
remains to be a challenging problem in practical applications of EAs. From an
analytical point of view, populations increase the complexity of the optimization
process considerably, as they introduce a lot of dependencies that need to be
taken care of in the mathematical analysis. It is therefore not surprising that

4

Algorithm 1: flip` chooses ` different positions and flips the entries in
these positions.
1 Input: x = (x1 . . . xn) ∈ {0, 1}n, ` ∈ N;
2 y ← x;
3 Select ` pairwise different positions i1, . . . , i` ∈ [n] u.a.r.;
4 for j = 1, ..., ` do yij ← 1− xij ;

only few theoretical works on population-based EAs exist, cf. [15] and references
mentioned therein. Most existing theoretical works regard algorithms with non-
trivial offspring population sizes, while the impact of the parent population size
has received much less interest.

Since one of the goals of this work is to showcase how benchmarking can
serve as a platform for theoreticians and practitioners to discuss new research
directions, we present below empirical and theoretical results for the (1+λ) EA,
the arguably simplest EA that combines a global sampling technique with a
non-trivial offspring population size. The (1 + λ) EA and its various variants
analyzed in Sections 3 and 4 are formally defined below. Existing theoretical
results for the selected benchmark problems will be presented in the respective
sections.

Notation. Throughout this work, the problem dimension is denoted by n.
As common in evolutionary computation, we assume that the algorithms know
the dimension of the problem that they are optimizing. We further assume that
we aim to maximize the objective function. For every positive integer r, we
abbreviate by [r] the set {1, 2, . . . , r} and we set [0..r] := {0} ∪ [r]. By ln we
denote the natural logarithm to base e := exp(1).

2.1 Motivation for the Modifications
As noted in [6] there exists an important discrepancy between the algorithms
classically regarded in the theory of evolutionary computation literature and
their common implementations in practice. For mutation-based algorithms like
(µ+ λ) and (µ, λ) EAs, this discrepancy concerns the way new solution candi-
dates are sampled from previously evaluated ones, and how the function eval-
uations are counted. Both algorithms use the above-described standard bit
mutation as only variation operator. An often recommended value for the mu-
tation rate p is 1/n, which corresponds to flipping exactly one bit on average,
an often desirable behavior when the search converges.

When implementing standard bit mutation, it would be rather inefficient to
decide for each i ∈ [n] whether or not the i-th bit of x should be flipped. Luckily,
this is not needed, as we can simply observe that standard bit mutation can be
equally expressed as drawing a random number ` from the binomial distribution
Bin(n, p) with n trials and success probability p and then flipping ` bits that are
sampled from [n] uniformly at random (u.a.r.) and without replacement. This
latter operation is formalized by the flip` operator in Algorithm 1. We refer to
` as the mutation strength or the step size, while we call p the mutation rate.

Analyzing standard bit mutation, we easily observe that the probability to
not flip any bit at all equals (1− p)n, which for p = 1/n converges to 1/ exp(1).
That is, in about 36.8% of calls to this operator, a copy of the input is returned.

5

For the (1 + λ) EA there is no benefit of evaluating such a copy (unless facing
a dynamic or noisy optimization setting), since it applies plus selection, where
both the parent as well as the offspring can be selected to “survive” for the next
generation. It is therefore advisable to change the probability distribution from
which the mutation strength ` is sampled. A straightforward (and commonly
used) idea is to simply re-sample ` from Bin(n, p) until a non-zero value is
returned. This approach corresponds to distributing the probability mass (1−
p)n of sampling a zero proportionally to all step sizes ` > 0. This gives the
conditional binomial distribution Bin>0(n, p), which assigns to each ` ∈ N a
probability of

(
n
`

)
p`(1− p)n−`/(1− (1− p)n). All our empirical results use this

conditional sampling strategy. The results can therefore differ significantly from
figures previously published in the theory of EA literature.1

2.2 The Basic (1 + λ) EA>0

The (1 + λ) EA samples λ offspring in every iteration, from which only the
best one survives (ties broken uniformly at random). Each offspring is created
by standard bit mutation. Following our discussion above, we make use of the
re-sampling strategy described above, and obtain the (1 + λ) EA>0, which we
summarize in Algorithm 2.

Algorithm 2: The (1 + λ) EA>0 with mutation rate p ∈ (0, 1) for the
maximization of f : {0, 1}n → R
1 Initialization: Sample x ∈ {0, 1}n u.a.r.;
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample `(i) from Bin>0(n, p);
5 y(i) ← flip`(i)(x);

6 Sample x from arg max{f(x), f(y(1)), . . . , f(y(λ))} u.a.r.;

2.3 Adaptive (1 + λ) EA>0 Variants
The (1 + λ) EA>0 has two parameters: the offspring population size λ and the
mutation rate p. Common implementations of the (1 + λ) EA>0 use the same
population size λ and the same mutation rate p throughout the whole opti-
mization process (static parameter choice), while the use of dynamic parameter
values is much less established. A few works exist, nevertheless, that propose
to control the parameters of the (1 + λ) EA online [7]. We focus in our em-
pirical comparison on algorithms that have a mathematical support. These are
summarized in the following two subsections.

2.3.1 Adaptive Mutation Rates

One of the few works that experiments with a non-static mutation rate for
the (1 + λ) EA was presented at GECCO 2017 [2]. The there-suggested al-

1We note that the suggestion to adapt the performance evaluation has been made several
times in the literature, e.g., [9, 18, 6], but has not been picked up systematically.

6

gorithm stores a parameter r that is adjusted online. In each iteration, the
(1 + λ) EAr/2,2r creates λ/2 offspring by standard bit mutation with mutation
rate r/(2n), and it creates λ/2 offspring with mutation rate 2r/n. The value of
r is updated after each iteration. With probability 1/2 it is set to the value that
the best offspring individual of the last iteration has been created with (ties
broken at random), and it is replaced by either r/2 or 2r otherwise (unbiased
random decision). Finally, the value r is capped at 2 if smaller, and at n/4, if
it exceeds this value. In our experiments, we use r = 2 as initial value.

In [2] it is shown analytically that the (1 + λ) EAr/2,2r yields an asymptot-
ically optimal runtime on OneMax. This performance is strictly better than
what any static mutation rate can achieve, cf. Section 3.1. How well the adap-
tive scheme works for other benchmark problems is left as an open question
in [2].

2.3.2 Adaptive Population Sizes

Apart from the mutation rate, one can also consider to adjust the offspring
population size λ. This is a much more prominent problem, because λ is an
explicit parameter, while the mutation rate is often not specified (and thus by
default assumed to be 1/n).

In the theory of EC literature, the following three success-based update rules
have been studied. In [20] the offspring population size λ is initialized as one.
After each iteration, we count the number s of offspring that are at least as good
as the parent. When s = 0, we double the population size, and we replace it
by bλ/sc otherwise. For brevity, we call this algorithm the (1 + {2λ, λ/s}) EA,
and its resampling variant the (1 + {2λ, λ/s}) EA>0.

Two similar schemes were studied in [11] where λ is doubled if no strictly
better search point has been identified and either set to one or to max{1, bλ/2c}
otherwise. We regard here the resampling variants of these algorithms, which
we call the (1 + {2λ, 1}) EA>0 and the (1 + {2λ, λ/2}) EA>0, respectively.

3 OneMax
We start our empirical investigation with the class of OneMax functions, the
generalization of the function Om that assigns to each bit string x the number
|{i ∈ [n] | xi = 1}| of ones in it. For this generalization, Om is composed with
all possible XOR operations on the hypercube. More precisely, for any bit string
z ∈ {0, 1}n we define the function Omz : {0, 1}n → [0..n], x 7→ |{i ∈ [n] | xi =
zi}|, the number of bits in which x and z agree. The OneMax problem is the
collection of all functions Omz, z ∈ {0, 1}n.

To identify interesting parameter ranges for the offspring population size
λ and the mutation rate p, we first summarize known theoretical results in
Section 3.1. Results of the performance profiling will be discussed in Section 3.2.

3.1 Theoretical Bounds
OneMax is often referred to as the drosophila of EC. It is therefore not sur-
prising that among all benchmark functions, OneMax is the problem for which
most runtime results are available. Due to the space limit, we can only summa-
rize a few selected results.

7

Concerning the (1+λ) EA, the first question that one might ask is whether or
not it can be beneficial to generate more than one offspring per iteration. When
using the number of function evaluations (and not the number of generations)
as performance measure, intuitively, it should always be better to create the
offspring sequentially, to profit from intermediate fitness gains. This intuition
has been formally proven in [20], where it is shown that for all λ, k ∈ N the
expected optimization time (i.e., the number of function evaluations until an
optimal solution is queried for the first time) of the (1 + kλ) EA cannot be
better than that of the (1 + λ) EA. This result implies that λ = 1 is an optimal
choice. Note, however, that the number of generations needed to find an optimal
solution can significantly decrease with increasing λ, so that it can be beneficial
even for OneMax to run the (1 + λ) EA with λ > 1 when a parallel function
evaluations are possible.

For λ = 1 the runtime of the (1 + 1) EA with static mutation rate p > 0
is quite well understood, cf. [3] for a detailed discussion. For general λ and
static mutation rate p = c/n (where here and henceforth c > 0 is assumed to be
constant), the expected optimization time is (1± o(1))

(
nλ ln lnλ
2 lnλ + ec

c n lnn
)
[4].

An interesting observation made in [2] reveals that the parametrization p = c/n
is suboptimal: with p = ln(λ)/(2n) the (1 + λ) EA needs only an expected
number of O(nλ/ log(λ) +

√
λn log n) function evaluations to optimize One-

Max [2] (the proof requires λ ≥ 45 and λ = nO(1)). We call this algorithm the
(1 + λ) EAp=ln(λ)/(2n).

When using non-static mutation rates, the best expected optimization
time that a (1 + λ) EA can achieve on OneMax is bounded from below by
Ω(nλ/ log(λ) + n log n) [8]. This bound is attained by a (1 + λ) EA variant
with fitness-dependent mutation rates [8]. Interestingly, it is also achieved by
the self-adjusting (1 +λ) EAr/2,2r described in Section 2.3.1 (the proof requires
again λ ≥ 45 and λ = nO(1)).

Concerning the algorithms using non-static offspring population sizes
(cf. Section 2.3.2), we do not have an explicit theoretical analysis for the (1 +
{2λ, λ/s}) EA, but it is known that the expected optimization time of both the
(1 + {2λ, 1}) EA and the (1 + {2λ, λ/2}) EA is O(n log n) [11].

Disclaimer. It is important to note that all the bounds reported above (and
those mentioned in Section 4.1) hold, a priori, only for the classical (1 + λ) EA
variants, not the resampling versions regarded here in this work. For most
bounds, and in particular the ones with static parameter choices, it is, however,
not difficult to prove that the modifications do not change the asymptotic order
of the expected optimization times. What does change, however, is the leading
constant. As a rule of thumb, runtime bounds for the (1 + λ) EA decrease by
a multiplicative factor of about 1 − (1 − p)n when the mutation strengths are
sampled from the conditional binomial distribution Bin>0(n, p).

Note also that in our summary we collect only statements about the total
expected optimization time. Fixed-target results for non-optimal target values
are not yet very common in theoretical works on EAs, and neither are fixed-
budget results. Here again the (1 + 1) EA and the (1 + λ) EA with static
parameters form an exception as for these two algorithms a few theoretical
fixed-budget results exist, cf. [10, 1, 5, 16] and references therein.

8

Figure 1: Average optimization times for 100 independent runs of the (1 +
λ) EA>0 variants, normalized by n lnn. (Initial) population size for the adaptive
variants is 50. p∗ = ln(λ)/(2n)

3.2 Empirical Evaluation
We now come to the results of our empirical investigation. All figures presented
in this work are averages over 100 independent runs. This might look like a
small number, but we recall that we track the whole optimization process, to
present the fixed-target results below. As a rule of thumb, storing the data for
the 100 runs of one algorithm on one dimension requires around 5-10 MB of
storage. Despite the seemingly small number of repetitions, the numbers and
results presented below are quite consistent. We also recall that in the COCO
framework, an often recommended choice is to have around 15 independent runs,
cf. [14, Section 3.1].

We also note that for this work we have not yet adjusted the post-processing
part of the COCO environment, so that the plots in this submission have been
created by Microsoft Excel. We are working on making an automated post-
processing available as soon as possible.

We have seen above that, for reasonable parameter settings, the average
optimization times of the (1 + λ) EA variants are all of order n log n. We
therefore normalize the empirical averages in Figure 1 by this factor.

We observe that the normalized averages are quite stable across the dimen-
sions, with an exception of the (1+50) EA, whose relative performance improves
with increasing problem dimension. We also see that the (1 + 50) EA>0 variant
with p∗ = ln(λ)/(2n) achieves a better optimization time than the (1+50) EA>0

with p = 1/n. The variants with adaptive offspring population size perform
significantly worse than the (1+1) EA>0, which is not surprising given the per-
formance hierarchy of the (1+λ) EAs mentioned in the beginning of Section 3.1.

For the tested problem dimensions, the worst-performing algorithm in our
comparison is the (1 + λ) EAr/2,2r. This may come as a surprise since this

9

(a) Average fixed-target runtimes
T (A,Om, i). The difference of
the (1 + {2λ, λ/s}) EA>0 to the
(1 + {2λ, 1}) EA>0 is less than 2%
for Om(x)-values ≥ 1, 800, and the curves
are therefore indistinguishable in this
range.

(b) Gradients G(A,Om, i) and relative dis-
advantage R(i) of the (1+50) EA>0 over
the (1+2) EA>0

Figure 2: Fixed target data for the 3, 000-dimensional OneMax problem (av-
erages over 100 runs)

algorithm is the one with the best theoretical support. The advantage of this
algorithm seems to require much larger problem dimensions, different values of
λ, and/or different settings of the hyper-parameters that determined its update
mechanism.

A general question raised by the data in Figure 1 concerns the sensitivity
of the adaptive (1 + λ) EA variants with respect to the initialization of their
parameters and with respect to their hyper-parameters, which are the update
strengths, but also the initial parameter values of λ and r, respectively.

It has been discussed in Section 3.1 that for OneMax the performance of
the (1+λ) EA can only be worse than that of the (1+1) EA. In fact, the data in
Figure 1 demonstrates a quite significant discrepancy between the performance
of the (1 + 1) EA>0 and the (1 + λ) EA>0 variants with λ ≥ 10. The expected
optimization time of the (1 + 50) EA>0, for example, is about twice as large as
that of the (1 + 1) EA>0. Intuitively, this can be explained as follows. At the
beginning of the OneMax optimization process the probability that a random
offspring created by the (1 + λ) EA improves upon its parent is constant. In
this phase the (1 + λ) EA variants with small λ have an advantage as they
can (almost) instantly make use of this progress, while the (1 + λ) EAs with
large λ first need to wait for all λ offspring to be evaluated. Since the expected
fitness gain of the best of these λ offspring is not much larger than that of
a random individual, large offspring population sizes are detrimental in this
first phase of the optimization process. We note, however, that the relative
disadvantage of large λ is much smaller towards the end of the optimization
process. When, say, the parent individual x satisfies Om(x) = n − Θ(1), the
probability that a random offspring has a better function value is of order Θ(1/n)
only. We therefore have to create Θ(n) offspring, in expectation, before we see
any progress. The relative disadvantage of creating several offspring in one
generation is therefore almost negligible in the later parts of the optimization
process (provided that λ = O(n)). This informal explanation is confirmed by
the plots in Figure 2, which display for n = 3, 000

10

1. in Figure 2a: the empirical average fixed-target times T (A,Om, i); i.e.,
the average number of function evaluations that the (1 +λ) EA>0 variant
A needs to identify a solution of Om-value at least i. We cap this plot at
60, 000 evaluations.

2. in Figure 2b: the gradients G(A, i) := T (A,Om, i)−T (A,Om, i−1) (three
lowermost curves), and the relative differenceRi := (avgj=i,i+1,...,i+5(G((1+
50)EA>0, j)−avgj=i,i+1,...,i+5G((1+2)EA>0, j)/G((1+2)EA>0, j)) of the
rolling average of the gradients of the (1 + 50) and the (1 + 2) EA>0.

Note that the gradient G(A, i) measures the average time needed by algorithm
A to make a progress of one when starting in a point x of OneMax-value
Om(x) = i. Small gradients are therefore desirable. We see that, for example,
the (1+50) EA>0 (green curve) needs, on average, about 20 fitness evaluations to
generate a strictly better search point when starting in a solution of Om-value
around 1,700. The (1 + 2) EA>0, in contrast, needs only about 2.6 function
evaluations, on average. The relative disadvantage of the (1 + 50) EA>0 over
the (1 + 2) EA>0 decreases with increasing function values from around 7 to
zero, cf. the uppermost (yellow) curve in Figure 2b. We use the rolling average
of 5 consecutive values here to obtain a smoother curve for R(i).

Another important insight from Figure 2a is that the dominance of the
(1 + 1) EA>0 over all (1 + λ) EA>0 variants does not only apply to the total
expected optimization time, but also for to all intermediate target values. This
can be shown with mathematical rigor by adjusting the proofs in [20, Section 3]
to suboptimal target values.

4 LeadingOnes
In this section we consider the performance of the (1+λ) EA on LeadingOnes,
which will shed a different light on the usefulness of large population sizes.
Known theoretical bounds are summarized in Section 4.1. In Section 4.2 we
discuss selected findings of our empirical investigation. These results inspire us
to present a refined mathematical analysis for the expected optimization time
of the (1 + λ) EA on LeadingOnes in Section 4.3.

Before presenting our results, we recall that LeadingOnes is the general-
ization of the function Lo, which counts the number of initial ones in the string,
i.e., Lo(x) = max{i ∈ [0..n] | ∀j ≤ i : xj = 1}. The generalization is by compos-
ing with an XOR-shift and a permutation of the positions. This way, we obtain
for every z ∈ {0, 1}n and for every permutation (one-to-one map) σ of the set
[n] the function Loz,σ : {0, 1}n → N, which assigns to each x the function value
max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)}. The LeadingOnes problem is the
collection of all these functions.

4.1 Theoretical Bounds
Also for LeadingOnes it has been proven that the optimal value of the offspring
population size λ in the (1 + λ) EA is one when using function evaluations and
not generations as performance indicator [20]. In contrast to OneMax, however,
we will observe, by empirical and mathematical means, that the disadvantage
of non-trivial population sizes is much less pronounced for this problem.

11

Figure 3: Average optimization times for 100 independent runs, normalized by
n2. (Initial) population size for the adaptive variants is 50.

The (1 + 1) EA with fixed mutation probability p has an expected opti-
mization time of 1

2p2 ((1 − p)−n+1 − (1 − p)) + 1 on LeadingOnes [17], which
is minimized for p ≈ 1.59/n. This choice gives an expected runtime of about
0.77n2. A fitness-dependent mutation rate can decrease this runtime further to
around 0.68n2 [17]. For the (1 + 1) EA>0, it has been observed in [18] that
its expected optimization time decreases with decreasing p. More precisely, it
equals 1−(1−p)n

2p2 ((1 − p)−n+1 − (1 − p)) + 1, which converges to n2/2 + 1 for
p→ 0.

For λ = nO(1), the expected optimization time of the (1 + λ) EA with
mutation rate p = 1/n is O(n2+nλ) [20]. With this mutation rate, the adaptive
(1+{2λ, bλ/2c}) EA and the (1+{2λ, 1}) EA achieve an expected optimization
time of O(n2) [11]. Any (1 + λ) EA variant with fixed offspring population size
λ but possibly adaptive mutation rate p needs at least Ω(λn

ln(λ/n) + n2) function
evaluations, on average, to optimize LeadingOnes [8].

As mentioned, we will revisit and refine the bound for the (1 + λ) EA in
Section 4.3 but we first present the empirical results that have motivated this
analysis.

4.2 Empirical Results
Similarly to the data plotted in Figure 1, we show in Figure 3 the normalized
average optimization times of the different algorithms; the normalization factor
is n2.

For all (1+λ) EA variants, a fairly stable performance across the three tested
dimensions n = 500, n = 1, 000, and n = 1, 500 can be observed. We also see
that the (1 + {2λ, λ/s}) EA>0 performs very well; it is just slightly worse than
the (1+2) EA>0. The (1 + {2λ, λ/2}) EA>0, the (1 + {2λ, 1}) EA>0, and the
(1 +λ) EAr/2,2r, in contrast, perform significantly worse than any of the tested
(1 + λ) EA>0. For the former two algorithms, preliminary test show that the
disadvantage can be decreased by adjusting the update rule to the one used by

12

Figure 4: Fixed-target runtimes of the (1 + λ) EA>0 variants on the 1, 500-
dimensional LeadingOnes problem

the (1 + {2λ, λ/s}) EA>0, i.e., to base the update decision upon the presence
of offspring that are at least as good as the parent. With this update rule the
performances become very similar to that of the (1 + {2λ, λ/s}) EA>0. The
(1 + λ) EAr/2,2r will be discussed in more detail below.

Another interesting observation is that the value of λ does not seem to have
a significant impact on the expected performance. This is in sharp contrast to
the situation for OneMax, cf. our discussion in the second half of Section 3.2.
Building on our discussion there, we can explain this phenomenon as follows.
Unlike for OneMax, the situation for LeadingOnes is that the expected fit-
ness gain of a random offspring created by a (1 + λ) EA variant with static
mutation rate p = c/n is very small throughout the whole optimization process.
More precisely, it decreases only mildly from around 2c/n when Lo(x) = 0 to
2c(1 − c/n)n−1/n ≈ 2c/(ecn) for Lo(x) = n − 1. Thus, intuitively, the whole
optimization process of LeadingOnes is very similar to the last steps of the
OneMax optimization.

Figure 4 presents the average fixed-target runtimes for selected (1+λ) EA>0

variants on the 1, 500-dimensional LeadingOnes problem. We add to this
figure the fixed target runtime of Randomized Local Search (RLS), the greedy
(1+1)-type hill climber that always flips one random bit per iteration. RLS
has a constant expected fitness gain of 2/n on LeadingOnes and thus a total
expected optimization time of n2/2 + 1.

We observe that the performance of the (1+1) EA>0, the (1+50) EA>0, and
the (1 + {2λ, λ/s}) EA>0 are indeed very similar throughout the optimization
process, the curves are almost indistinguishable. The same applies to the (1 +
λ) EA>0 with λ = 2, 5, 10, these algorithms are therefore not shown in Figure 4.
We also see that the fixed-target performance of these algorithms is better than
that of RLS for all Lo-values up to around 1, 250 ≈ 0.42n (exact empirical
values are 1, 227 for the (1 + 50) EA>0 and 1, 283 for the (1 + 1) EA>0, but we
recall that such numbers should be taken with care as they represent an average
of 100 runs only. It should not be very difficult to compute the cutting point

13

precisely, by mathematical means).
Since the only difference between the (1 + 1) EA>0 and RLS is the dis-

tribution from which new offspring are sampled, we see that the (1 + λ) EA
variants profit from iterations in which more than one bit are flipped in the
beginning of the optimization process, while they suffer from this same effect in
the later parts. This situation is even more pronounced in the (1 +λ) EAr/2,2r,
which outperforms all other tested algorithms for target values up to 709. Its
performance then suffers from creating at least half of its offspring with a too
large mutation rate. Recall that even if the algorithm has correctly identified
the optimal mutation rate p(Lo(x)), it still creates half of its offspring with
mutation rate 2p(Lo(x)). This results in a mediocre overall performance. This
observation certainly raises the question of how to adjust the structure of the
(1 + λ) EAr/2,2r to benefit from its good initial performance. From the view-
point of hyper-heuristics, or algorithm selection, an adaptive selection between
the (1 + λ) EAr/2,2r and the (1 + λ) EA>0 would be desirable.

If we had looked only at the total optimization times, we would have classified
the (1+λ) EAr/2,2r as being inefficient. The fixed-target results, however, nicely
demonstrate that despite the poor overall performance, there is something to
be learned from this algorithm. This emphasizes the need for a fine-grained
benchmarking environment.

4.3 Precise Bounds for LeadingOnes
We have observed that, for LeadingOnes, the runtimes of the (1 + λ) EA>0

variants with static parameter choices are very close to that of the (1+1) EA>0.
In Theorem 1 we show that for every constant λ, the expected optimization time
of the (1+λ) EA>0 converges from above against that of the (1+1) EA>0 (and
the same holds for the (1+λ) EA and (1+1) EA, respectively). Theorem 1 can be
proven by adjusting the proofs in [17] to the (1+λ) EA. An important ingredient
in this analysis is the observation that the probability of making progress in one
generation with parent individual x equals 1− (1−p(1−p)Lo(x))λ, i.e., 1 minus
the probability that none of the λ offspring is better. Recall that in order to
create a better offspring, none of the first Lo(x) bits should flip, while the
(Lo(x) + 1)-st bit does need to be flipped. The results for the (1 +λ) EA>0 can
be obtained from that for the (1 + λ) EA by taking into account that the re-
sampling strategy increases the expected fitness gain by a multiplicative factor
of 1/(1− (1− p)n).

Theorem 1. For all n, λ ∈ N the expected optimization time of the (1 + λ) EA
with static mutation rate 0 < p < 1 on the n-dimensional LeadingOnes func-
tion is at most

1 +
λ

2

n−1∑
j=0

1

1− (1− p(1− p)j)λ
(1)

and the expected optimization time of the (1 + λ) EA>0 is at most

1 +
(1− (1− p)n)λ

2

n−1∑
j=0

1

1− (1− p(1− p)j)λ
. (2)

14

To judge the precision of the bound stated in Theorem 1, we first note that
for λ = 1 expression (1) is tight by the result presented in [17] (note though that
the additive +1 term is suppressed there as they regard the number of iterations,
not function evaluations). Similarly, for the (1 + 1) EA>0 expression (2) is tight
by the bound proven in [18].

Apart from this case with trivial offspring population size λ = 1, it might
be tedious to compute the expected optimization time of the (1 + λ) EA on
LeadingOnes exactly, since in our proof for Theorem 1 we would have to take
into account that in one generation more than one search point that improves
upon the current best search point can be generated. Since the (1 + λ) EA
chooses the best one of these, the distribution of this offspring would have to be
computed. Note, however, that this effect can only have a very mild impact on
the bounds stated above, as is occurs relatively rarely and does, in general, not
result in a much larger fitness gain. Put differently, the bounds in Theorem 1
are close to tight for reasonable (i.e., not too large) values of λ.

As the expressions in Theorem 1 are not easy to interpret, we provide in
Table 1 a numerical evaluation of the upper bound (2) for different values of λ
and n. We add to this table (second row) the empirically observed averages,
which show a good match to the theoretical bound.

500 1,000 1,500 10,000 100,000 500,000
(1+1) 54.317% 54.313% 54.311% 54.309% 54.308% 54.308%
emp. 54.0% 54.1% 54.2% - - -
(1+2) 54.349% 54.328% 54.322% 54.310% 54.308% 54.308%
emp. 54.8% 54.4% 54.2% - - -
(1+5) 54.444% 54.376% 54.353% 54.315% 54.309% 54.308%
emp. 54.5% 54.8% 54.6% - - -
(1+50) 55.883% 55.091% 54.829% 54.386% 54.316% 54.310%
emp. 57.6% 55.3% 55.2% - - -

Table 1: Theoretical upper bounds from Theorem 1

5 Conclusions
Building on the COCO software we have developed a benchmark environment
that can be used to create fine-grained performance profiles for pseudo-Boolean
benchmark problems. Results for OneMax and LeadingOnes have been pre-
sented in this documentation. These results inspired a refined analysis of the
expected optimization time of the (1 + λ) EA on LeadingOnes.

Our mid-term objective is to develop the benchmarking environment into a
platform that practitioners and theoreticians use to exchange ideas and research
questions on pseudo-Boolean black-box optimization. A key design question will
be the selection of problems that shall be included in the benchmark suite. Our
initial focus has been on functions for which some theoretical understanding of
typical optimization processes is available, such as linear functions, Leadin-
gOnes, Jump, etc. Going forward, we intend to include optimization problems
that shed light on how the performance is influenced by certain problem features,
such as the modality, the separability, the degree of constraints, etc.

15

Acknowledgments

This work was supported by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with
Gaspard Monge Program for optimization, operations research and their inter-
actions with data sciences. Parts of our work have been inspired by discussions
of COST Action CA15140 Improving Applicability of Nature-Inspired Optimi-
sation by Joining Theory and Practice.

References
[1] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices

via precise black-box analysis. In GECCO’16, pages 1123–1130. ACM,
2016.

[2] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1+
λ) evolutionary algorithm with self-adjusting mutation rate. In GECCO’17,
pages 1351–1358. ACM, 2017.

[3] Carsten Witt. Tight bounds on the optimization time of a randomized
search heuristic on linear functions. Combinatorics, Probability & Comput-
ing, 22:294–318, 2013.

[4] Christian Gießen and Carsten Witt. The interplay of population size
and mutation probability in the (1 + λ) EA on OneMax. Algorithmica,
78(2):587–609, 2017.

[5] Dogan Corus, Jun He, Thomas Jansen, Pietro S. Oliveto, Dirk Sudholt,
and Christine Zarges. On easiest functions for mutation operators in bio-
inspired optimisation. Algorithmica, 78:714–740, 2017.

[6] Eduardo Carvalho Pinto and Carola Doerr. Discussion of a more practice-
aware runtime analysis for evolutionary algorithms. In EA’17, pages 298–
305, 2017.

[7] G. Karafotias, M. Hoogendoorn, and A.E. Eiben. Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Transactions on
Evolutionary Computation, 19:167–187, 2015.

[8] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-
box complexity of parallel search. In PPSN’14, volume 8672 of LNCS,
pages 892–901. Springer, 2014.

[9] Jano I. van Hemert and Thomas Bäck. Measuring the searched space to
guide efficiency: The principle and evidence on constraint satisfaction. In
PPSN’02, volume 2439 of LNCS, pages 23–32. Springer, 2002.

[10] Johannes Lengler and Nicholas Spooner. Fixed budget performance of the
(1+1) EA on linear functions. In FOGA’15, pages 52–61. ACM, 2015.

[11] Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring
populations and parallel evolutionary algorithms. In FOGA’11, pages 181–
192. ACM, 2011.

16

[12] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: A
platform for comparing continuous optimizers in a black-box setting. ArXiv
e-prints, arXiv:1603.08785, 2016.

[13] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and D. Brockhoff. COCO
github page. https://github.com/numbbo/coco, [n. d.].

[14] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tusar, and Tea
Tusar. COCO: performance assessment. CoRR, abs/1605.03560, 2016.

[15] Per Kristian Lehre and Pietro Simone Oliveto. Runtime analysis
of population-based evolutionary algorithms: introductory tutorial at
GECCO 2017. In GECCO’17 Companion Material, pages 414–434. ACM,
2017.

[16] Samadhi Nallaperuma, Frank Neumann, and Dirk Sudholt. Expected fit-
ness gains of randomized search heuristics for the traveling salesperson
problem. Evolutionary Computation, 25, 2017.

[17] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and
adaptive mutation rates for the LeadingOnes problem. In PPSN’10, volume
6238 of LNCS, pages 1–10. Springer, 2010.

[18] Thomas Jansen and Christine Zarges. Analysis of evolutionary algo-
rithms: from computational complexity analysis to algorithm engineering.
In FOGA’11, pages 1–14. ACM, 2011.

[19] Thomas Jansen and Christine Zarges. Performance analysis of randomised
search heuristics operating with a fixed budget. TCS, 545:39–58, 2014.

[20] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice
of the offspring population size in evolutionary algorithms. Evolutionary
Computation, 13:413–440, 2005.

17

https://github.com/numbbo/coco

	Introduction
	The Role of Benchmarking in EC
	Performance Criteria
	Comment on the Benchmark Problems

	Summary of Algorithms
	Motivation for the Modifications
	The Basic (1+l) EA
	Adaptive (1+l) EA Variants
	Adaptive Mutation Rates
	Adaptive Population Sizes

	OneMax
	Theoretical Bounds
	Empirical Evaluation

	LeadingOnes
	Theoretical Bounds
	Empirical Results
	Precise Bounds for LeadingOnes

	Conclusions

