Identifying flight delay patterns
using diverse subgroup discovery

Hugo M. Proenca
LIACS
Leiden University
Leiden, Netherlands
h.manuel.proenca@liacs.leidenuniv.nl

Leiden University
Leiden, Netherlands
r.a.klijn@umail.leidenuniv.nl

Thomas Bick
LIACS
Leiden University
Leiden, Netherlands
T.H.W.Baeck@liacs.leidenuniv.nl

Ruben Klijn
LIACS

Matthijs van Leeuwen

LIACS

Leiden University
Leiden, Netherlands
m.van.leeuwen @liacs.leidenuniv.nl

Abstract—Flight delay is a common hassle that affects around
one of each four flights and has been a major concern for
airlines for decades. As a consequence, an increasing amount
of research was done on this topic in recent years. Notably, the
fields of machine learning and data mining have proposed various
solutions for the prediction of flight delays, typically hours to days
before departure. However, the most important decisions made
by airlines that could benefit from such predictions, i.e., those
on scheduled block time and crew schedules, are made between
two to six months prior to departure. Consequently, late delay
predictions are useless for these scheduling tasks.

As accurately predicting delays for individual flights a long time
in advance is practically infeasible, we instead propose to search
for circumstances that tend to lead to large delays. For this
we propose to use diverse subgroup discovery, a data mining
technique that allows to discover subgroups, i.e., subsets of the
data that 1) deviate from the overall data with regard to some
target variable, and 2) can be described by a simple conjunctive
query on the other variables.

We apply diverse subgroup discovery to historic flight data
and mine subgroups of flights that, on average, have a large
delay. We show that this approach gives subgroups that can
be easily understood by experts, despite the fact that non-
trivial relations between multiple variables can be discovered. We
show that using diverse subgroup discovery gives less redundant
results than standard top-k subgroup discovery and demonstrate
that even in situations where inferring an accurate predictive
model is infeasible, local deviations can be effectively captured
and described by local patterns, potentially providing valuable
insights for, e.g., airline scheduling problems.

Index Terms—subgroup discovery, flight delays, data mining

I. INTRODUCTION

In 2017, the airline industry carried more than 500 billion
passengers worldwide [1]. Even relatively rare flight delays
can thus affect millions of persons every year, which not
only decreases airline revenues and consumer satisfaction, but
also produces unnecessary carbon emissions. In 2017, 19%
of the (more than) 1.8 million flights in the US alone were
delayed [2]. Taking into account that the number of passengers
is predicted to double over the next 20 years, while airport

capacity is not expected to increase that much, it is highly
likely that these numbers will increase [1]. This corroborates
the need for effective solutions for reducing flight delays in
the near future.

Research on the topic of flight delays has seen a fourfold
increase between 2010 and 2016 [3]. The topic has been
approached from the fields of machine learning, econometrics,
operations research, statistics, and probability, which has
resulted in methods that aim at, e.g., prediction of flight
delays [4]-[6], network delay propagation [7]-[9], and
cancellation policies of airlines [10]. Interestingly, most of
this research has been restricted to the last hours or days
prior to departure, when data sources are abundant. For
example, weather data and information on the state of the
airline network, both strongly associated with delay, are
typically used. Until now, there has not been much interest
in long term prediction of (chronic) delays, probably because
this is a very hard task, if at all feasible: information that
is available long in advance, such as airplane schedules and
origin—destination airports pairs, is typically only very weakly
associated with flight delays. Regardless, we argue that even
if it is infeasible to infer accurate, global models for the
prediction of individual flight delays, historic flight data still
contains relevant information that can provide valuable insight
into temporal and spatial aspects of flight delay—already at
the crucial moment when airline schedules need to be decided.

Approach and contributions. To identify flight delay patterns
from data, we propose to use subgroup discovery, a data
mining technique that allows to discover subgroups, i.e.,
subsets of the data that 1) deviate from the overall data with
regard to some target variable, and 2) can be described by a
simple conjunctive query on the remaining variables. Given a
dataset, a query language, and a quality measure, subgroup
discovery algorithms find queries describing large subsets
of the data having large deviations in the target variable.



More specifically, we use diverse subgroup discovery, which
improves over basic subgroup discovery by identifying sets of
subgroups that are less redundant [11].

We apply diverse subgroup discovery to historic flight data and
mine subgroups of flights that, on average, have a large delay.
The purpose of our experiments is to demonstrate what kind
of insights an airline team in charge of scheduled block times
and/or crew assignment could use when making its decisions,
which typically happens six to two months prior to take-
off [12]. We therefore solely use data that is available six
months prior to departure. As an example, the best subgroup
obtained using arrival delay as target variable is described
by the following query: date € [26/03,31/08] A dep. €
[11:30,23:59] A arr. € [15:40,3:50]. This query can be
read as: flights departing from the 26" of March to the end
of August, with departure times between 11:30 and 23:59,
arrival times between 15:40 and 3: 50. These flights constitute
21% of the dataset and have an average delay of 20 minutes,
compared to an overall average of 7 minutes.

The main contributions can be summarized as follows: 1) we
propose the use of subgroup discovery for the identification
of flight delay patterns; 2) we demonstrate the benefits of
using diverse subgroup discovery, as opposed to standard
subgroup discovery, on a real-world problem; and 3) we show
that part of the chronic flight delays can be described using
only variables that are available 6 months prior to departure,
thereby contributing to an understudied problem in the airline
industry. By being able to take into account circumstances
that structurally lead to delays, the use of historical data will
ultimately enable airlines to make their operation more robust.

II. RELATED WORK

The research on the topic of flight delays can be divided in
four parts [3]: problem; scope; data; and method. Our main
contributions are in the realm of the scope: we study flight
delays with variables available far in advance; and the method:
we use subgroup discovery to identify regions of interest in
the dataset. For this reason we will restrict our related work
to: 1) machine learning and data mining applications to flight
delays; and 2) subgroup discovery.

A. Flight delays

With the recent affluence of large and cheap storage facilities,
and substantial computational power, data science techniques
have started to play an important role in the study of flight
delays [3]. Frequent pattern mining, the unsupervised coun-
terpart of subgroup discovery, was used to analyze flight
delays in the Brazilian network [13]. This work has some
similarity to ours as it also uses patterns to study regions
of the dataset that are more prone to delays, but four key
differences distinguish our work. First, they analyze flight
delays as a binary target, either delayed or not, while we
analyze flight delays as numeric targets, taking into account
the length of delays. Second, their analysis is guided by asking
a question and fixing the respective variables, while we only
choose an interestingness measure and obtain all our results

automatically without manual selection. Thirdly, they need to
make an a priori discretization of their continuous variables,
while we allow our algorithm to automatically find the best
intervals for our variables during search. Lastly, their work also
takes into account weather data and delay state of the airports,
while we only focus on scheduled dates and origin-destination
airports pairs.

Machine learning algorithms have been able to harness the
information available in historical data to accurately predict
flight delays in different contexts. To mention some interesting
applications: random forests were applied to predict departure
delays 2-24 hours in advance in the 100 most delayed links
of the US system [5]; the predictions of an adaptive fuzzy
network were used as input in a decision support system
for arrivals in JFK airport [6]; and reinforcement learning
algorithms were used for the prediction of taxi-out times in
Tampa international airport [4]. Even though they also use
historical data, their concern is to produce a global model, that
can perform predictions, where we focus on locally describing
delays in an human interpretable way.

In general, regression and classification also aim at finding
the relationship between the explanatory and response variable
through historic data, but they are concerned with finding a
global model of how the variables interact with each other.
Subgroup discovery, on the other hand, finds local models
that describe the behavior in specific subsets of the dataset.

B. Subgroup discovery

Subgroup discovery was first introduced in the 90s [14], with
algorithms such as Opus [15] and Explora [16]. It has been
applied to a vast array of applications [17], such as identifying
the properties of materials [18] and unusual consumption
patterns in smart grids [19]. Recently, for the specific case
of numerical targets, an efficient exhaustive search algorithm
was proposed to reduce the need to resort to heuristics [20],
and a novel way of taking into account the dispersion of the
target variable of the groups was introduced [21].

Common approaches to reduce the redundancy among sub-
groups encompass supervised pattern set mining [22] and
methods based on relevance [23] and diversity [11], [24]
(as used in this work). Unlike diversity-based methods, the
supervised pattern set mining objective is to find a fixed
number of patterns, which has to be chosen in advance, and
relevance is limited to non-numeric targets.

III. DATA ACQUISITION AND PREPROCESSING

Historic data of flights in the United States is freely available
through the Bureau of Transportation Statistics (BTS) [2].

We restrict our analysis to a single airline, a single year, and
the busiest operating airports for that airline. The reason for
this is that airlines have different strategies when choosing
the schedule time for their routes, and these can also change
with a periodicity of six months [12]. Also, the results should
reveal which schedules are associated with more delays so
that an airline can improve, and using multiple airlines with
different strategies can muddle these insights. The restriction



to the busiest airports comes from the fact that they are
more prone to chronic delays than smaller ones, while also
covering most flights of an airline. To make the analysis
more relevant, the year of 2017 was selected, a normal year
of airline operation when compared with the years of 2007
and 2008, where the recession affected the operation of some
airports [2]. After that, the major US airline with most delays
during this period was chosen: American Airlines (AA), with
circa 20% of flights delayed [2]. Lastly, we restricted our
study to the top-3 departure airports and their top-3 arrival
airports, as they cover about 5% of all the flights of AA and
account for most of delays.

After all canceled and diverged flights have been removed the
acquired data totals 36 149 samples; the used variables can
be seen in Table I. The original features downloaded from the
BTS are: date; CRS (schedule local time) departure time; CRS
arrival time; CRS elapsed time; distance group; origin airport;
destination airport; arrival delay; and departure delay. The date
was transformed to six variables: the metereological season,
the respective month, the day of the year, day of the week, if it
is a week day (or weekend), and if it is a national holiday. The
scheduled local (CRS) arrival and departure times were kept
as they were and duplicated to departure and arrival time 12,
which are rotations of the variables starting at 12: 00 instead
of 00:00. This will take into account the fact that time is a
circular variable that jumps from 23:59 to 00: 00 and allow
for complementary intervals such as: 22: 00 < dep. time <
04: 00, which otherwise would be impossible. Elapsed time,
distance group, origin, and destination were kept unchanged.

IV. SUBGROUP DISCOVERY

Subgroup discovery is an exploratory data mining technique
used to find interesting subsets of a dataset [17]. A sub-
set is described by a conjunctive query on the explanatory
variables, which we will call a pattern. In the case of flight
delays a pattern could take the form of X = {Origin =
San Francisco A Season = Summer}, with A being the
logical AND operator. Combined with a target variable, e.g.,
“Arrival Delay”, the pattern forms a rule, which describes the
distribution of arrival (or departure) delay of the subset formed
by that description. Note that only one target variable can be
used at a time. As the number of possible combinations of
variables in a dataset grows exponentially with the number of
variables, their interestingness has to be measured to select the
best descriptions. This interestingness is evaluated by means
of a quality function that, typically, quantifies to what extent
a subset differs from the overall dataset distribution [17]. In
the flight industry, the population distribution of the arrival
and departure times is given by the mixture of distributions of
all flight schedules as they were arranged by their respective
airlines. Our objective is to find the most interesting patterns
that deviate from these “normal” schedules.

The software used in our experiments to find subgroups is
the Diversity Subgroup Set Discovery (DSSD) tool [11], and

TABLE I: Description of the variables of the dataset taken
from the US Federal Bureau of Statistics, for the top-3
busiest airports and the top-3 busiest destinations of Amer-
ican Airlines in 2017. For each variable, given are its type
{binary, categorical, numeric}, its range (numeric) or its
number of unique values (binary/categorical), and its usage
in the model: either to describe the subset (explanatory) or to
define the distribution of interest (target).

Variable Type  Range/cardinality Usage
Season categorical 4
Month numeric [1,12]
Day of the year numeric [0, 365]
Day of week numeric [1,7]
Week day binary 2
Holiday binary 2
Departure time numeric [00: 00, 23:59]
) ] explanatory
Departure time 12 numeric [12:00,11:59]
Arrival time numeric [00: 00, 23:59]
Arrival time 12 numeric [12:00,11:59]
Elapsed time numeric [101, 229)min.
Origin categorical 3
Destination categorical 5
Arrival delay numeric ~ [—58,1079]min. target
Departure delay numeric  [—30, 1099]min. target

it was chosen for its diverse subgroup set selection and fast
implementation.

The rest of this section is organized as follows: 1) query
language: the language used to describe the subsets and target
variable; 2) quality measure: how the interestingness of subsets
is quantified; and 3) diverse subgroup selection: how diverse
search is established.

A. Notation and query language

Consider a dataset D composed of one flight (x,y) per row,
with a vector of explanatory variables x and a numeric target
variable y. Explanatory variables are used to explain the
target. The vector x is composed of n variables, with their
respective values of the form: x = (z1,9,...,x,). These
variables can be of three types: numeric, categorical, and
binary. Each type of variable can be queried according to
different logical operators: numeric with greater or less than
{>, <}; binary with equal to {=}, categorical with equal or
not equal to {=,#}. The query formed by the conjunction of
specific variable values or intervals is called a pattern X, e.g.,
X = {Origin°**¢9°rice! £ San Francisco A Week day”"*™V =
yes A Departure Time™*™“"** > 11 : 00}, where the super-
script denotes the type of variable. A pattern X over dataset
D implies a subgroup, formally given by

Dx ={(x,y) € D | X(x) = true}, (1)

where X (x) is a predicate that returns positive if the condi-
tions of pattern X are satisfied by tuple x, and |Dx| is the



coverage of the subgroup, i.e., the number of samples in the
dataset for which X (x) returns positive.

The empirical probability distribution of the numeric target y
over the whole dataset D will be referred to as pp(y), and
over a subgroup Dx as px(y). Thus a pattern X implies a
rule from query to numeric target of the form:

X = px(y) (2)

Importantly, we consider only the means of the empirical
distributions just mentioned. That is, we assume that all
deviations between px (y) and pp(y) that are of interest can be
observed from the difference between their respective means.

B. Quality measure

To assess the quality (or interestingness) of a pattern X, a
measure that scores and ranks subsets D x needs to be chosen.
The measures used in subgroup discovery vary depending
on the target and/or application [17]. In the case of flight
delays, either arrival or departure delay can be the numeric
target. A quality measure for a numeric target usually takes
the following form

Q(X) = |DX‘a(:U’X - MD)a a € [07 ]-]7 (3)

where |D x| is the number of samples covered by the pattern
X, pux and pp are the mean of the empirical distribution
of the subgroup, px (y), and the dataset, pp(y), respectively.
Parameter a is a coefficient that allows to control the trade-
off between coverage and the difference of the means. The
separation of the quality measure into two parts helps to
find generalizable patterns: if only the difference of means
(x — pp) would be used, its maximization would be trivially
achieved by selecting the pattern with highest difference,
independently of how much data it covers. Given our interest
in patterns that have a larger delay, we selected the Mean Test
[11], with @ = 0.5, giving relatively large importance to the
difference of the means:

am(X) = /|Dx|(px — pp) “4)

C. Diverse subgroup set selection

Classically, subgroups are ranked by their qualities and then
the top-k patterns are presented, with k being a value selected
by the user [17]. The problem with this approach is that the
top-k results tend to be redundant, especially when the number
of variables and samples is large [11].

This is especially important in the case where explanatory
variables are redundant, as it is in our case, where for example
the month of January can be described by day of year < 32
or month < 2, and the same is true for other cases such as
departure, arrival, and elapsed time, or day of week and week
day, and so forth.

Without diversity the top-k results would overlap and be vari-
ations of the same pattern. For this reason, we use diversity-
based selection. In particular, DSSD offers three different
approaches: cover-based; compression-based; and description-
based selection. Compression-based selection is immediately

excluded as it can only be applied to information-theoretic
measures, such as Kullback-Leibler divergence. Description-
based does not help solving our redundancy problem, as our
redundancy does not stem from the repetition of variables in
a description but from the associations between our variables.
The diversity measure left that fits our goal is cover-based
selection, where subgroup qualities are penalized when they
cover the same region of the dataset. We will proceed to
describe cover-based selection.

Cover-based beam search first selects the highest-scoring sub-
group based on the quality measure (in our case the M-score
(4)), and then updates the score of subsequent candidates by
introducing a weight if they cover the same part of the space
of previous selected subgroups. The weighting scheme used is
based on multiplicative weighted covering [25]:

D

(X)GDX

Q(X, Sel) = .

ac®%e) €01 (5)
|Dx|

where Sel are the subgroups already selected, c(x, Sel) is the
number of subgroups that already cover this sample and « is
a weight parameter. The new selection score for ranking the
subgroups is the product of the chosen quality measure and
the diversity score:

q(X) = Q(X, Sel) - qu (X) (6)

The candidates for the first subgroup will have (X5, @) =1,
as there are no subgroups selected yet. After the first sub-
group is selected, the second subgroup will have a weight
of Q(C;, X1), which will be updated for each candidate C;
depending on their overlap with X; according to (6).

D. DSSD algorithm

The DSSD algorithm is a heuristic that allows to find a good
approximation of the best subgroups given a quality measure
[11]. A high-level description is given in Algorithm 1. The
algorithm can be divided in three distinct phases that we will
briefly explain next; for an in-depth characterization of each
phase, please refer to Van Leeuwen and Knobbe [11].

The first phase (line 1) consists of a beam-search of fixed
(or varying) width b to find the top-j subgroups, where j
should be a number much larger than the final number of
subgroups wanted. The beam search varies depending on the
type of diversity exploration the user selects (parameter S in
Alg. 1): none (standard beam search); description; cover; or
compression. The generation of candidates proceeds top-down,
where new candidates are generated by adding one condition
to subgroups in the beam at each iteration, after which the
beam is updated with new candidates, until the maximum
depth selected by the user is reached. The generation of new
candidates by adding conditions is called refinement and de-
pends on the type of variable: binary, categorical, or numeric.
For the binary case, only the operator = is used to construct
candidate conditions, e.g., weekday = yes. For the categorical
case, =,7# can be used, e.g., season # spring. For the
numeric case, <, > are used, e.g., departure time < 11:00.
For numeric variables DSSD has an “on-the-fly” binning



technique that generates up to a maximum number of equal-
sized bins specified by the user for each subgroup where the
variable occurs, allowing for a more fine-grained discretization
of the variables. After the maximum depth search is achieved,
the top-j subgroups are returned to enter the next phase.

In the second phase (line 2) dominance-based pruning is
applied to the top-j subgroups obtained from phase one.
Dominance-based pruning tests the existence of subgroups that
are strict subsets of subgroups of phase one that have a higher
quality than the original, and in that case these subsets replace
their supersets.

In the third phase (line 3) k subgroups, with k£ < j,
are selected based on the strategy S chosen for the beam
search: none, description, cover, or compression; to remove
any redundancy that was left after the previous phases.

Algorithm 1 The DSSD algorithm

Input: Dataset D, quality measure g, number of top sub-
groups j and k, minimum coverage minc, maximum
size of subgroups maxd, and specific selection strategy
parameters S

Output: R, a diverse set of subgroups with high quality

1: R <« Diverse-Beam-Search(D, q, j, minc, maxd, S)
2: R < Dominance-Pruning(R)

3: R < Subgroup-Selection(R, ¢, k, S)

4: return R

V. EXPERIMENTS

In this section we present the results of our experiments,
obtained using the dataset as described in Section IV-D.
First, a single variable analysis of arrival and departure
delays will be shown. Then a baseline subgroup discovery
algorithm—DSSD without diversity strategy—will be applied
to departure delays, to compare against its diverse counterpart.
Finally, diverse subgroup discovery will be applied with both
departure and arrival delay as target.

We present only the best ten subgroups found by the different
methods, as this is also how domain experts would typically
inspect the results in a real-world scenario.

DSSD parameters. The DSSD algorithm, described in Sec-
tion IV-D, has several parameters that need to be set. The
parameters chosen for our experiments were the following:
type of search: beam; fixed beam width 100; quality measure:
mean test of eq. (4); diversity strategy: none for non-diverse
analysis of Section V-B, and cover for the diverse analysis of
Sections V-C and V-D; weighted covering and multiplicative
covering with cover multiplier o = 0.9 for the multiplicative
cover-based selection of eq. 5; maximum description length 5;
minimum coverage 10; j = 10 000 (top-j of the first phase);
k = 100 (top-k of the third phase). Most parameters were
selected similarly to the recommendations by Van Leeuwen
and Knobbe [11], with the exception of j, which was chosen
large enough as to accommodate the larger dataset of 30 000
samples.

Description of the subgroups. The variables of Table III have
some overlap and can represent the same description with
different variables, which can be hard to interpret. For this
reason we chose to translate the results obtained with DSSD
to a less redundant structure, as follows:

e date — the days and months of the year that make the
subgroup interval, in dd/mm format, where dd is the
day of the month and mm is the month of the year.

e dep. and arr. — the departure and arrival time, respec-
tively, in hh:mm format, where hh stands for hours and
mm minutes.

e day_month, day_week — the day of the month and week,
respectively, in numeric format [1,12] and [1, 7], where
the 1st day of the week is Monday.

e orig. and dest. — origin and destination airport respec-
tively.

o time — the flight scheduled duration in minutes.

A. Single variable analysis of arrival and departure delays

The goal of this analysis is to show to what extent it is
possible to find informative subgroups using a single variable
analysis. Average arrival and departure delays were averaged
over: month of the year; day of the month; day of the week;
distance group; departure time; arrival time; origin airport; and
arrival airport. Other variables, such as season, day of the year,
week day, and elapsed time, were not plotted as their structure
can be seen through the eight selected variables.

The results can be seen in Figure 1. In general, the summer
months, June to August, seem to imply longer delays, while
fall and winter months seem to imply shorter delays. Also late
departure/arrivals seem to be associated with longer delays. In
the case of arrival it is worth noticing that there is a delay spike
around 03: 00. This happens because at this hour there are only
10 flights and one of them suffers from a major delay, up to
10 hours. LAX (Los Angeles International Airport) seems to
have relatively short arrival delays: 2 minutes compared to
a dataset average of 7 minutes. For the other variables, i.e.,
day of the month, distance group, and departure airport, there
seems to be no visible relation with delay as their averages
remain similar throughout their respective ranges.

From this point onwards the single variable analysis could
only be extended to subgroups with more than one condition
by manually combining visually promising variables, which
would require an intensive ‘trial and error’ process until
manually finding the right intervals of the variables. Even
then, this slow approach might not result in the best possible
subgroups, hence the need for an automated approach to
subgroup discovery.

B. Top-10 non-diverse subgroups for departure delay

For this experiment departure delays were used for non-
diverse subgroup discovery, to have a comparison baseline
against the diverse search. It should be noted that DSSD
without diverse selection is similar to most standard subgroup
discovery approaches and represents a baseline algorithm to
compare to. The top-10 subgroups can be seen in Table II.
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After the subgroups were translated to the format described
in the beginning of this section, it turned out that most
descriptions were the same although written with different
variables, and that only three distinct subgroups were actually
found: 1—4, 5—6 and 7—10. After closer inspection it can be
observed that all subgroups are a variation of the first one, with
all the ten subgroups having the same date range. The only
changes are the usage of departure instead of arrival time in the
subgroups 5—6, and by not selecting the 315¢ day of the month
and including the holidays in the subgroups 7—10. This shows
that for a dataset such as ours—with redundant variables—
enforcing diversity is necessary. (Note that it would also be
possible to do feature selection to remove seemingly redundant
variables, but it is usually not clear a priori which ones should
be removed to allow for clear and concise patterns.)

C. Diverse subgroup sets for departure delay

In the next experiment, we use DSSD with cover-based
diversity and departure delay as target variable. The diverse
subgroup set, consisting of ten subgroups found through
iterative scoring and selection, can be seen in Table III. On
average they cover 22% of the dataset and have a delay of 22
minutes, compared to a dataset average of 12 minutes.

The first departure delay subgroup covers 23% of the dataset
and has an average delay of 23 minutes. It thus affects almost
one fourth of the dataset and has a delay that is almost double
the average. This is clearly an interesting part of the data
that should be taken into consideration by schedulers. On the
other hand, the subgroup with the highest delay, 30 minutes,
covers 8% of the dataset, and has as condition that the day
of the month should be smaller than 24*". This is especially
interesting as in the single variable analysis of Figure 1 there
seems to be no clear relationship between delays and the day
of the month.

25 = Dep. delay
m== Arr. Delay

25 == Dep. delay
m== Arr. Delay

delay (min.)
delay (min.)

ORD LGA LAX

arrival airport

DFW cr MIA DFW
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arrival and departure delay for different temporal and spatial variables

Compared with the non-diverse results of Table II, it can
be seen that the diversity measure helps to obtain subgroups
that cover different regions of the dataset. However, it should
be said that most subgroups tend to focus around the cen-
tral months of the year of June to August, and late depar-
tures/arrivals in general. This is interesting as even penalized
by the diversity measure there is still an overlap, which tells
us that this central region of the dataset is particularly prone
to large departure delays.

D. Diverse subgroup set for arrival delay

In this experiment we used DSSD with cover-based diversity
and arrival delay as target variable. The best ten subgroups
obtained can be seen in Table IV. On average they cover 22%
of the dataset, and have a delay of 19 minutes, compared to
a dataset average of 7 minutes.

The best description is centered around the middle of the
year, from the end of March to the end of August, for flights
departing after noon. The subgroup with the largest delays is
the 5%, which has an average delay of 23 minutes and affects
11% of the flights.

Similarly to departure delays it can be noticed that most
subgroups are centered around the same dates, departure, and
arrival times. This is a clear indicator that this is the part of the
data that exhibits the highest delays affecting most airplanes.
Also, the subgroups of this experiment are very similar to
the ones obtained for departure delays in Table III, which is
expected as departure delay is correlated with arrival delay.

E. Discussion of the results

In general all the results agree that the summer months—June
to August—and later departures tend to lead to longer delays
and are more prevalent than others.

It is interesting to observe the difference between the top-
10 non-diverse and the diverse results of Tables II and III,



TABLE II: Top-10 non-diverse subgroups obtained departure delays as target variable. Rank, average delay in minutes, M-score,

coverage in percentage, and description of the subgroup.

# Del. (min.) ¢(X) Cov. (%) Description of the subgroup

1 22 1010 24 date € [01/03,02/09] A dep. € [13:59,23:59] A holiday = no

2 22 1010 24 date € [01/03,02/09] A dep. € [13:59,23:59] A holiday = no

3 22 1010 24 date € [01/03,02/09] A dep. € [13:59,23:59] A holiday = no

4 22 1010 24 date € [01/03,02/09] A dep. € [13:59,23:59] A holiday = no

5 22 1007 27 date € [01/03,02/09] A arr. € [15:52,03:42] A holiday = no

6 22 1007 27  date € [01/03,02/09] A arr. € [15:52,03:42] A holiday = no

7 22 1006 24 date € [01/03,02/09] A dep. € [13:59,23:59] A day_month € [1,30]
8 22 1006 24 date € [01/03,02/09] A dep. € [13:59,23:59] A day_month € [1,30]
9 22 1006 24 date € [01/03,02/09] A dep. € [13:59, 23:59] A day_month € [1,30]
10 22 1006 24 date € [01/03,02/09] A dep. € [13:59,23:59] A day_month € [1, 30]

TABLE III: Diverse subgroup set obtained with departure delay as target variable. Dataset average delay is 12 minutes. Rank,
average delay in minutes, M-score, coverage in percentage, and description of the subgroup.

# Del. (min.) ¢(X) Cov.(%) Description of the subgroup

1 23 1015 23 date € [01/03,31/08] A dep. € ([11:30,11:59] V [13:30,23:59]) A arr. € [16:35, 11:59]

2 30 1012 8 date € [01/06,31/08] A day_month € [1,24] A dep. € [11:30,23:59] A arr. € [15:45,03:49]

3 22 1004 28 date € [01/03,31/08] A dep. € [11:30,23:59] A arr. € [15:20,23:59] A holiday = no

4 21 988 27  date € [01/03,31/08] A dep. € [11:30,23:59] A arr. € [13:30,03:49] A holiday = no

5 22 1007 27  date € [01/03,31/08] A dep. € [11:30,23:59] A arr. € [15:30,03:49] A holiday = no

6 20 836 24 date € [01/01,29/08] A dep. € [14:30,23:59] A arr. € [16:10,05: 59] A time € [130, inf[Aorig. # CLT
7 24 884 13 date € [01/05,11/08] A day_month € [1,24] A arr. € [12:00,09: 25] A time € [130, inf[Aholiday = no
8 22 885 19 date € ([24/02,31/08] V [01/12,31/12]) A dep. € [13:20,22:00] A arr. € [18:44,23:02]

9 21 865 24 date € [01/01,30/08] A dep. € [14:55,21:56] A arr. € [13:41,22: 56]

10 19 751 30 date € [01/12,31/08] A dep. € [13:20,22:00] A arr. € [12:00,05:54] A time € [130, 204[Aorig. # CLT

TABLE IV: Diverse subgroup set obtained with arrival delay as target variable. Dataset average delay is 7 minutes. Rank,
average delay in minutes (Del.), M-score, coverage in percentage, and description of the subgroup.

#  Del (min.) ¢(X) Cov. (%) Description of the subgroup

1 20 1120 21 date € [26/03,31/08] A dep. € [11:30, 23:59] A arr. € [15: 40, 3: 50]

2 21 1110 16  date € [01/03,02/08] A day_week € [1,6] A dep. € [13:20,23:59] A dest. # LAX

3 19 1106 24 date € [26/03,31/08] A dep. € [11:30,23:59] A arr. € [15:40,3:50] A holiday = no

4 17 1066 29 date € [23/02,31/08] A dep € [11:30,23:59] A arr € [15:20,3:50]

5 23 1021 11 date € [01/06,02/08] A day_month € [1,24] A arr. € [12:00, 3: 50]

6 18 1036 22 date € ([23/02,31/08] Vv [01/12,31/08]) A day_week € [1,6] A arr. € [15:51,23:59] A dest. # LAX
7 18 1035 24 date € [03/03,31/08] A arr. € [13:41,22:55] A dest. # LAX

8 16 987 33 date € ([23/02,31/08] V [01/12,31/08]) A dep. € [15:20,03:49] A arr. € [15:20, 23: 59] A dest. # LAX
9 20 967 15  date € [01/06,20/08] A day_month € [1,24] A arr. € [12:00,9:25] A holiday = no

10 18 955 21 date € [01/12,31/08]) A dep. € [12:00,21:15] A arr. € [13:41,22: 56] A dest. # LAX

respectively. These results reveal the importance of enforcing
diversity when searching for subgroups that show distinct
perspectives on variables associated with delay. In the non-
diverse case most subgroups were redundant and in practice
only one subgroup was found in the top-10.

Arrival and departure delay are clearly correlated, as can
be seen from the figures of single variable analysis and the
similar subgroups obtained for departure (Table III) and arrival
(Table IV). However, there are some differences, as arrival
delays subgroups tend to have earlier arrival times, and more

often include the day of the month and day of the week as
variables. For departure delay we also found that flights have
longer delays if they do not depart from CLT, and arrival
delays tend to be longer subgroups if the destination airport
is not LAX. Finally, it should be noted that both descriptions
are centered around June to August, which coincides with the
dates of school vacations in the US.

From the point of view of scheduling, the information provided
by the subgroups could contribute to making schedules more
robust with regard to delays. This could be done by, e.g.,



providing more resources to those groups of flights that tend
to have longer delays. From this perspective our subgroup
discovery approach seems useful, as the descriptions can be
very specific. For example, the flights of the subgroup with
the longest arrival delay in Table IV have an average delay
that is 16 minutes longer than the overall average, and can be
attributed to around 11% of the flights.

VI. CONCLUSION

We used diverse subgroup set discovery (DSSD) to find
groups of flights with relatively long delays from historic
flight data. In doing so, were the first to apply DSSD to
a real world application. The results show that potentially
useful associations can be discovered between flight delay and
explanatory variables that are available six months before the
flight takes place. Specifically, the results suggest that variables
seemingly unrelated to delay, such as day of the week and
day of the month, can help to identify large subgroups of
flights that suffer from relatively long delays. To achieve this,
the diverse selection of subgroups turned out be crucial, as it
helped to strongly reduce the redundancy in the result sets.
The proposed approach may provide valuable insights for two
important scheduling problems in the airline industry, i.e., for
block time and crew scheduling.

Future work. As future work we plan to validate the obtained
results on an external dataset, such as 2018 flight data once
it is available, to assess how well the obtained subgroups
generalize. Further, restricting the analysis to a certain type
of delays, such as air traffic control delay, could return more
specific subgroups associated with the given type of delay.
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