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Abstract. Within the field of exploratory data mining, subgroup dis-
covery is concerned with finding regions in the data that stand out with
respect to a particular target. An important question is how to validate
the patterns found; how do we distinguish a true finding from a false
discovery? A common solution is to apply a statistical significance test
that states that a pattern is real iff it is different from a random subset.
In this paper we argue and empirically show that this assumption is
often too weak, as almost any realistic pattern language specifies a set
of subsets that strongly deviates from random subsets. In particular,
our analysis shows that one should expect the unexpected in subgroup
discovery: given a dataset and corresponding description language, it is
very likely that high-quality subgroups can —and hence will— be found.

1 Introduction

Subgroup Discovery (SD) [7,19] is concerned with finding regions in the data that
stand out with respect to a given target. It has many closely related cousins, such
as Significant Pattern Mining [17] and Emerging Pattern Mining [1], which all
concern the discovery of patterns correlated with a Boolean target concept. The
Subgroup Discovery task is more generic, i.e., it is agnostic of data and pattern
types. For example, the target can be either discrete or numeric [5].

A large number of SD algorithms and quality measures have been proposed
and it is easy to mine thousands or millions of patterns from data. One question
that naturally arises is how to validate these (potential) discoveries: how do we
distinguish a ‘true’ pattern from a ‘fluke’ that is present in the data by chance
and therefore does not represent any true correlation between description and
target? In other words, how do we distinguish true from false discoveries?

Statistical testing for pattern mining has received quite some attention over
the past decade. Webb was one of the pioneers of this topic and pointed out al-
ready in 2007 that the size of the entire pattern space under consideration should
be used as Bonferroni correction factor for multiple hypothesis testing [18]. He
also observed that when the null hypothesis supposes that the consequent of a
rule/pattern is independent of its antedecent, Monte Carlo sampling of the tar-
get variable can be used to generate a null distribution. Almost simultaneously,
Gionis et al. introduced randomisation testing on Boolean matrices [3].
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Permutation tests [4] are a non-parametric approach to hypothesis testing,
with the main advantage that p-values are computed from simulations instead
of formulas of parametric distributions. This makes them especially suitable
for situations where the null-hypothesis cannot be assumed to have a known
parametric form. As a result, permutation tests have since become fairly popular
in the data mining community and have been used for, e.g., studying classifier
performance [15] and statistical testing for subgroup discovery [2].

More recently, several efficient statistical pattern mining methods have been
proposed, mostly for rule discovery in Boolean matrices. Hämäläinen, for exam-
ple, proposed Kingfisher [6], for efficiently searching for both positive and nega-
tive dependency rules based on Fisher’s exact test. Terada et al. [17] introduced
LAMP, which considers a similar setting but employs a smaller Bonferroni cor-
rection based on the notion of ‘testable patterns’. Recently improvements have
been introduced that make LAMP more efficient [13] and versatile [12].

Expect the unexpected The technical assumption underlying most statis-
tical tests for pattern mining is that of exchangeability of the observations under
the null hypothesis [4]. Simply put, a priori the selection of any subset of the data
is deemed to be equally likely and the observed patterns are tested against this
assumption. In this paper we argue and empirically show that this assumption
is often too weak: in practice almost any pattern language and dataset specify a
set of data subsets that strongly deviates from this assumption.

In particular, we will investigate how likely it is to observe a completely
random subset having a large effect size, i.e., a large deviation from the global
distribution. As we will see, this probability tends to be very small. Next, we
will investigate how likely it is that a given description language, i.e., a set of
possible patterns, contains descriptions having large effect size. As we will see,
this probability tends to be substantially larger. As a result, we conclude that
one should expect the unexpected in pattern mining in general and in subgroup
discovery in particular: given a dataset and a description language, it is very
likely that high-quality subgroups can —and hence will— be found.

One possible conclusion to draw from this is that null-hypothesis significance
testing for individual patterns should be used with caution: although it helps
to eradicate some very obvious false discoveries, the often-used null hypothesis
based on exchangeability may be too weak for the p-values to be useful. Note
that we are not the first to warn for the use of significance-based filtering in
pattern mining [11], but we are the first to analyse and empirically investigate
the effect of the description languages used in pattern mining and their relation
to the null hypothesis that assumes random data subsets.

Section 2 introduces the basics of Subgroup Discovery, after which Section 3
presents our approach to quantifying the significance of description languages.
More precisely, we will formalise the odds of observing a pattern having a large
effect size versus observing a random subset having such a large effect size. As
computing these odds exactly is clearly infeasible, we introduce the machinery
required for estimating its two components in Sections 4 and 5. We present the
empirical analysis in Section 6 and conclude in Section 7.
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2 Subgroup Discovery

A dataset D is a bag of tuples t over the attributes {A1, . . . , Am, Y }, where the
Ai are the description attributes A and Y is the target attribute. Each attribute
has a Boolean, nominal or numeric domain.

A subgroup consists of a description and a corresponding cover. That is, a
subgroup description is a pattern S, i.e., a conjunction of conditions on the de-
scription attributes. Its corresponding subgroup cover is the bag of tuples that
satisfy the pattern defined by predicate S, i.e., C(S) = {t ∈ D | t � S}. We
slightly abuse notation and refer to either the description or its cover using S
(depending on context). We use |S| to denote the size of the cover, also called
coverage. Further, a description language L consists of all possible subgroup
descriptions, parametrised by maximum depth maxdepth, which imposes a max-
imum on the number of conditions that are allowed in a description.

The Subgroup Discovery task is to find the top-k ranking subgroups accord-
ing to some quality measure ϕ : 2Y 7→ R, which assigns a score to any individual
subgroup based on its target values. We consider the well-known Weighted Rela-
tive Accuracy (WRAcc), defined as ϕWRAcc(S) =

√
|S|(µ(S)−µ), where µ is the

mean of the target variable (restricted to the tuples in the subgroup cover in case
of µ(S)). WRAcc is well-defined for Boolean target attributes by interpreting
the proportion of ones as the mean of Boolean values.

To discover high-quality subgroups, top-down search through the pattern
space is commonly used. Several parameters influence the search, e.g., a mini-
mum coverage threshold requires subgroup covers to consist of at least mincov
tuples and the maxdepth parameter allows to restrict the size of the search space.
During search, the overall top-k subgroups are usually kept as final result.

3 Estimating the Significance of a Description Language

In this section we motivate and formalise the approach that we will take to
empirically investigate the significance of subgroups or, more accurately, their
description languages. For this, we start by making three important observations.

The first observation, which we already mentioned in the Introduction, is
that the null hypotheses of most statistical tests for pattern mining are based
on random subsets of the data. This is also the case for, for example, the target
permutation test proposed by Duivesteijn and Knobbe [2]. The rationale for per-
muting the target attribute is that this will result in datasets with no meaningful
functional relationship between the description attributes and the target. Sub-
groups found in the actual data should have a higher quality than those found
on the permuted data, or otherwise the subgroup is there “by chance”.

We will empirically show, however, that given some ‘non-random’ dataset,
almost any description language corresponds to a set of subsets that is very
different from the set of random subsets, trivially resulting in very low p-values.
Hence, this type of null hypothesis is often too weak and any approach based on
this assumption will render many patterns significant; see, e.g., [2,18].
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The second observation is that pattern mining techniques search for the best
patterns present in a given description language. This observation has two im-
mediate consequences. First, one cannot only consider the best found pattern
and treat this as ‘the result’, i.e., as if this were the only observation. Instead,
as Webb observed [18], one has to take into account that all patterns in the
description language are (implicitly or explicitly) considered and hence apply
multiple hypothesis correction, for example Bonferroni correction. Second, this
also means that there is essentially no difference between testing 1) a description
language in its entirety and 2) the best patterns that were found using search. We
therefore deviate from the common approach and investigate the ‘significance’
of entire description languages rather than that of individual patterns.

Finally, the third observation is that it is key to distinguish —using appro-
priate statistical terms— sample size on one hand and effect size on the other
hand. In case of Subgroup Discovery, this implies distinguishing subgroup cov-
erage from the difference in target distribution between the subgroup and the
dataset. These two quantities are usually combined by the quality measure for
the purpose of ranking the patterns, but —unlike Duivesteijn and Knobbe [2]—
we will treat these strictly separately for our analysis. There are two reasons
for this: 1) quality measures such as Weighted Relative Accuracy are somewhat
arbitrary combinations of coverage and relative accuracy, and using a global
quality threshold may therefore result in somewhat arbitrary decisions, 2) larger
effect sizes are more likely for smaller sample sizes.

Thus, we need to define sample size and effect size. Sample size is simply
subgroup coverage as defined in the previous section. For the purpose of this
paper we base the effect size on WRAcc and hence define it as q(S) = (µ(S)−
µ)/σ, where µ and σ are the mean and standard deviation of the target variable.

3.1 Description Languages and Accessible Subsets

Although patterns are specified by the descriptions that make up a description
language, what really matters for our analysis are the subsets of the data that
these descriptions imply, i.e., their corresponding covers. We therefore introduce
the notion of accessible subsets.

Given a description language L and data D, denote by XL,D the set of all pos-
sible non-empty subgroup covers in D that are accessible using L. More formally,
we define the set of accessible subsets as

XL,D = {E ⊆ D | ∃S ∈ L s. t. C(S) = E, |E| > 0}. (1)

While the precise size of XL,D, i.e., |XL,D|, is data dependent, in general it will
be (much) smaller than 2N , with N = |D|. This leads to another observation:
in most practical cases only a fraction of subsets of D are accessible with L.
For instance, in this paper we define L as all conjunctions of conditions on
the description attributes up to a given number of conditions (maxdepth). This
language can only represent subgroups with a cover that is an intersection of
half-spaces in the feature space of D, the number of which is substantially lower
than 2N for most practical datasets.
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In general, the size ofXL,D can be regarded as a measure of the expressiveness
of the language L in the database D; it is more informative than the number
of descriptions, as multiple descriptions may imply the same cover. Even more
important for our purposes, however, is that it fully specifies the set of subsets
that one needs to consider in order to determine the significance of a given
combination of description language and dataset.

3.2 On the Significance of Description Languages

Although the task of Subgroup Discovery is to find descriptions of ‘large’ covers
having a ‘large’ effect size, in general all subsets of the data can be associated
with an effect size. Thus, we can introduce notions that quantify how probable it
is to observe a certain effect size in either 1) an accessible or 2) a random subset
and compare these two probabilities. As noted before, this strongly depends on
the sample size, i.e., the number of tuples in the subset. We therefore propose to
compare the collection of accessible subsets with all (random) subsets having the
same size distribution to determine if the description language and data together
specify subgroups having relatively high effect size.

Let us first consider the accessible subsets. Let Xk,L,D denote the set of all
accessible subsets with coverage at least k, i.e., |S| ≥ k. Then, we are interested
in the probability that one such accessible subset has an effect size larger than
θ, i.e., how likely is that event? We will empirically estimate this probability as

Pr(q(S) ≥ θ | Xk,L,D) =
|{S ∈ Xk,L,D | q(S) ≥ θ}|

|Xk,L,D|
.

Next we are interested in the same probability, but computed for all possi-
ble subsets while taking the coverage distribution of the accessible subsets into
account. We denote this probability by Pr(q(S) ≥ θ | Dk). Based on our obser-
vations we expect the former probability to be much larger than the latter, as
this would indicate that the description language is ‘significant’ with regard to
the target attribute: it contains subgroups that have larger effect sizes than are
likely to be observed in random subsets.

We formalise the ratio between these two probabilities as the odds, a func-
tion of coverage threshold k, minimum effect size θ, description language L and
dataset D:

odds(k, θ, L,D) =
Pr(q(S) ≥ θ | Xk,L,D)

Pr(q(S) ≥ θ | Dk)
. (2)

Exactly computing the odds is clearly infeasible for any realistic dataset.
In the following two sections we will therefore introduce techniques to estimate
Pr(q(S) ≥ θ) for accessible subsets and for all subsets, respectively.

4 Estimating Pr(q(S) ≥ θ) for Accessible Subsets

We will now introduce a method for estimating the size of XL,D for |S| ≥ k, with
or without constraint on the effect size θ, so that we can estimate Pr(q(S) ≥ θ)
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for accessible subsets. For this we build upon the Spectra algorithm [10]; we
next provide a brief description but refer to [10] for the details, as we will focus
on the modifications needed for our current purposes.

The Spectra algorithm Spectra is a modification of Knuth’s seminal
algorithm [8] for estimating the size of a combinatorial search tree, which is
based on the idea of sampling random paths from the root of the tree to a leaf.
Let d = (d0, . . . , dh−1) denote the sequence of branching factors observed along
a path from the root (on level 0) to a leaf (on level h). The estimate produced

by d, which we call the path estimate, is defined as ê(d) =
∑h
i=1

∏i−1
i=0 di.

Since search trees are rarely regular in practice, Knuth’s algorithm samples a
number of different paths, and uses the average of the ê(d) values as an estimate
of the size of the tree. To use this method for estimating the number of patterns
having coverage ≥ k, we sample a number of paths from the root of the pattern
lattice up to (and including) the frequent/infrequent border, compute the path
estimates, and take the average of these. At every step the branching factor is
given by the number of extensions to the current pattern that are still frequent.
We need to make a small modification though, because the patterns do not
form a tree but a lattice, i.e., each node can be reached via multiple paths. We
therefore end up with the following estimator:

e(d) =

h∑
i=1

1

i!

i−1∏
i=0

di, (3)

which includes the normalisation term 1/i! to account for the i! possible paths
that can reach every node on the ith level.

The Spectra+ algorithm We describe two extensions to Spectra that
allow to estimate both |Xk,L,D| and |{S ∈ Xk,L,D | q(S) ≥ θ}|.

First, observe that, in the context of frequent itemset mining, the number
of accessible subsets is equivalent to the number of closed itemsets [16]. We
exploit this observation to estimate |Xk,L,D|: we estimate the number of closed
subgroups, where a subgroup is closed iff there exists no extension that does
not change its cover. Let ci denote an indicator variable for the pattern at level
i that is 1 iff it is closed and 0 otherwise. Then, a variant of Knuth’s original
method can be used to estimate the desired number3:

e(d) =

h∑
i=1

ci+1
1

i!

i−1∏
i=0

di. (4)

Second, observe that q(S) ≥ θ can be considered as another constraint that
can be evaluated for each individual subgroup. Hence, to estimate |{S ∈ Xk,L,D |
q(S) ≥ θ}| we use ci = I{Si is closed ∧ q(Si) ≥ θ} in combination with Eq.4.
Note that this simple yet effective constraint-based estimator can be used for
many other types of constraints as well.

3 Note that we here use a simpler yet more versatile approach for estimating the
number of closed patterns compared to the one proposed in [10].
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Although these modifications maintain the desirable property that the ex-
pected estimate is correct, they do lead to an increase in the variance. This is due
to the larger differences between the possible paths, which would require many
more samples to mitigate. Another potential solution to this problem, one that
is computationally less expensive, is to bias the path samples: instead of choos-
ing an extension uniformly at random, one can design an alternative sampling
distribution for each pattern extension. We consider two such biased samplers:

Frequency-biased sampler From all frequent extensions, one is randomly
chosen proportional to coverage. To adjust the estimates accordingly, each
branching factor is now computed as the inverse probability of choosing this

extension, i.e., di =
∑

S∈freq |C(S)|
|C(Si+1)| , where freq is the set of all frequent ex-

tensions considered at level i and Si+1 is the chosen one.
Quality-biased sampler The previous sampler has a preference towards sam-

pling larger covers, but this not necessarily imply large effect size. Therefore,
in an effort to more accurately estimate |{S ∈ Xk,L,D | q(S) ≥ θ}| for large
θ, we propose to randomly choose proportional to subgroup quality, i.e.,

WRAcc. The branching factors are modified accordingly: di =
∑

S∈freq ϕ(S)

ϕ(Si+1)
.

5 Estimating Pr(q(S) ≥ θ) for All Subsets

Next we turn our attention to estimating Pr(q(S) ≥ θ) for arbitrary data subsets.
To compute this estimate under the constraint where the random subsets follow
the same size distribution as the accessible subsets, as required above, we first
use Spectra+ to estimate the coverage distribution of accessible subsets using
a number of different values of k. Then, we use the estimators discussed in
this section separately for every value of k, and re-weight the estimates by the
probabilities of the respective k. The final estimate is simply the sum of these.

It is thus enough to define the estimators for a fixed coverage k. First, note
that the probability we are interested in is simply the expected value of the
indicator function I{q(S) ≥ θ}:

Pr(q(S) ≥ θ) = Eunif [I{q(S) ≥ θ}], (5)

where Eunif denotes that the expected value is computed over the uniform distri-
bution of all subsets with coverage k. Next we discuss three different approaches
resulting in four different estimators for Pr(q(S) ≥ θ).

Asymptotic – Normal approximation Since we have defined q(S) =
(µ(S)−µ)/σ, where µ and σ are the mean and standard deviation of the target
variable, respectively, a simple but efficient heuristic for Pr(q(S) ≥ θ) is given
by the tail of the standard normal distribution. According to the central limit
theorem, we have

√
kq(S) ∼ N (0, 1), when |S| = k. Let cdf(x) denote the

cumulative density of the standard normal distribution at x. Now we can use
1−cdf(

√
kθ) as an estimate of Pr(q(S) ≥ θ). In the experiments we will call this

the asymptotic estimator.



8 Matthijs van Leeuwen and Antti Ukkonen

Naive – Sample mean We can also use the sample mean to estimate the
expected value in Eq.5. Given S1, . . . , SR, a uniformly drawn sample of R subsets
of size k, we have

Pr(q(S) ≥ θ) ≈ R−1
R∑
i=1

I{q(Si) ≥ θ}. (6)

This is guaranteed to be an unbiased and consistent estimate of Pr(q(S) ≥ θ), but
it may require a prohibitively large R when estimating very small probabilities,
because in such cases we are unlikely to find random subsets S with effect size
above θ in a sample of realistic size. In particular, this will happen for large
values of θ. We call this estimator naive when reporting experimental results.

Weighted – Importance sampling To obtain good estimates also for large
minimum effect size θ, we resort to importance sampling. The idea of importance
sampling (see e.g. [14]) is to increase the probability of observing the event of
interest, in our case I{q(S) ≥ θ}, and re-weight these when computing the sample
mean so that the resulting expected value is equal to the desired probability. It
is easy to show (see Appendix A.1)that the expected value of the indicator
function under the uniform distribution (Eq. 5) is equal to the expected value of
the indicator function weighted by the coefficient W (S) under a biased sampling
distribution, that is,

Eunif [I{q(S) ≥ θ}] = Ebiased[W (S)I{q(S) ≥ θ}]. (7)

Here W (S) = p(S)
p′(S) , where p(S) and p′(S) are the probabilities to draw S un-

der the uniform and biased distributions, respectively. Now we can estimate
Ebiased[W (S)I{q(S) ≥ θ}] by drawing S1, . . . , SR according to p′ and computing

R−1
R∑
i=1

W (Si)I{q(Si) ≥ θ}. (8)

Unlike the basic sample mean estimator of Eq. 6, the weighted variant in Eq. 8
can give good estimates with a much smaller R, i.e., we need fewer samples,
provided we have chosen the biased sampling distribution p′ appropriately. We
must thus define both p′, as well as compute the weighting factor W (S).

The biased sampling distribution We first discuss p′. Since we want to
mainly draw random subsets that have a high q(S), in an ideal situation p′(S) ∝
q(S). A very simple way to achieve an effect similar to this is to draw S using
condition-specific probabilities that are proportional to the target values of the
possible extensions, i.e., all conditions that are considered to be added to the
current description. That is, we use a weighted sampling without replacement
scheme, where the condition weights are proportional to their target values.
More formally, let p′(u) denote the probability to draw the condition u (before
other conditions have been drawn), and define

p′(u) =
t(u)∑
v t(v)

, (9)
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where t(·) is the target value of an item. After drawing an item u we set the
probability p′(u) to zero, and renormalise the remaining probabilities to sum up
to 1. This is repeated until we have drawn k items. This will have the effect that
items having a high target value are more likely to be selected into S, and hence
q(S) will be biased towards higher values.

Next we discuss the weighting factor W (S). The problem is that to compute
W (S) exactly we must compute p′(S) (see also Appendix A.2), but no closed
form expression for p′(S) exists under weighted sampling without replacement,
and computing p′(S) exactly is infeasible. Hence we consider two heuristics.

Approximating W (S) by assuming a sampling with replacement scheme
As a first approximation, we can consider a scheme that corresponds to sam-
pling with replacement. In practice we still draw samples without replacement as
usual, but compute W (S) = p(S)/p′(S) as if we had used sampling with replace-
ment. This has the upside that all required probabilities have simple and easy to
compute closed form expressions. In particular, we have p̄(S) = 1

nk for uniform
sampling with replacement, and p̄′(S) =

∏
u∈S p

′(u) for weighted sampling with
replacement. Given these we can approximate W (S) as

W̄1(S) =

(
nk
∏
u∈S

p′(u)

)−1
(10)

where p′(u) is defined as in Eq. 9. Our first importance sampling estimator, called
W1 below, is thus defined by replacingW (S) in Eq. 8 with W̄1(S) of Eq. 10 above.
This estimator is not guaranteed to converge to the correct expected value, but
the experiments show that it still produces reasonable results.

Approximating W (S) by sampling permutations of S Our second ap-
proach to approximate W (S) relies on a different technique. As mentioned above,
the basic problem of computing W (S) exactly under weighted sampling with-
out replacement is that it would require us to consider the probabilities of all
possible permutations in which S could have been drawn. Doing this is clearly
infeasible in practice, as there are k! permutations for sets of size k. However, we
can compute an approximation of W (S) by using only a small sample of permu-
tations (see also Appendix A.3). Concretely, given a sample of Q permutations
of the set S, denoted π1, . . . , πQ, we can estimate W (S) as

W̄2(S) =

(
1

Q

Q∑
i=1

Pr(πi)

)−1
(n− k)!

n!
, (11)

where Pr(πi) is the probability to draw the permutation πi under the weighted
sampling without replacement scheme. Our second importance sampling estima-
tor, called W2, can now be defined by replacing W (S) in Eq. 8 with W̄2(S) of
Eq. 11.
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Table 1. Datasets according to target type. For each dataset the number of tuples and
the number of discrete resp. numeric description attributes are given.

Dataset Properties Dataset Properties
|D| |disc| |num| |D| |disc| |num|

Boolean target Numeric target
Adult 48842 8 6 Abalone 4177 1 7
Breast cancer 699 0 9 Crime 1994 1 101
Mushroom 8124 22 0 Elections 1846 71 2
Pima 768 0 8 Helsinki 8337 1 22
Spambase 4601 57 0 Housing 506 1 12
Tic-tac-toe 958 9 0 RedWine 1599 0 11

Wages 534 7 3

6 Experiments

We here present three experiments, of which the first two concern an assessment
of the sampling accuracy of the estimators introduced in the previous two sec-
tions. After that, we present our empirical analysis of the odds of observing high
effect size subgroups on a selection of datasets.

Table 1 presents the datasets that we use for Experiments 2 and 3, which all
have either a Boolean or a numeric target. Except for Crime and Elections, which
were described in [9], all were taken from the UCI Machine Learning repository4.
On-the-fly discretisation of numeric description attributes was applied, meaning
that 6 equal-size intervals were created upon pattern extension.

6.1 Experiment 1: Estimating Pr(q(S) ≥ θ) in All Subsets

We discuss an experiment to compare the four estimators of Pr(q(S) ≥ θ) in all
subsets. One difficulty with this is to generate a target variable so that an exact
ground truth probability can be calculated. It should also be possible to vary
the skew of the resulting distribution, as the estimators may be affected by this.

In this experiment we generate the target variable as follows. Let x denote
a vector of length n. We set the first m elements of x equal to v ≥ 1, and let
the remaining n − m elements of x be equal to 1. That is, let x[1 : m] = v,
and x[(m + 1) : n] = 1. By varying m and v we can adjust the skew, with
lower values of m and higher values of v implying a higher skew. Let µ and σ
denote the mean and standard deviation of x, respectively. The ground truth
probability for a given θ is now given by

Pr(q(S) ≥ θl) =

(
n

k

)−1 k∑
i=k−l

(
m

i

)(
n−m
k − i

)
, (12)

where l = bk(v−θσ−µ)v−1 c, and θl = (((k− l)v+ l)/k−µ)/σ (Appendix A.4). Notice
that since we take the floor when computing l, the resulting probability does not

4 http://archive.ics.uci.edu/ml/
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Table 2. Parameter values for synthetic target generation used in Experiment 1. Notice
that values for skew parameter m and subgroup coverage k are given as fractions of
n (the size of the generated target variable). For example, one combination that these
give for n, m and k is n = 2000, m = 0.3× 2000 = 600, k = 0.05× 2000 = 100.

Parameter Values Parameter Values

n 1000, 2000, 3000, 4000 k 0.05× n, 0.10× n
m 0.1× n, 0.3× n, 0.6× n θ 0.2, 0.4, 0.6, 0.8, 1.0
v 3, 6, 9 R 500

Table 3. Mean absolute error (MAE), minimum and maximum error, and recall of the
estimators for low θ (left side) as well as high values of θ (right side) when R = 500.

θ ≥ 0 θ ≥ 0.6
Estimator MAE (min, max) error Recall MAE (min, max) error Recall

Asymptotic 2.55 (0.004 19.2) 1.00 3.96 (0.035, 19.22) 1.000
Naive 0.18 (0.00, 1.5) 0.26 0.81 (0.677, 0.95) 0.014
W1 2.76 (0.00, 25.8) 0.84 1.61 (0.00, 11.19) 0.743
W2 2.67 (0.00, 30.3) 0.84 0.75 (0.00, 15.73) 0.743

correspond exactly to the given θ, but matches a value θl that is slightly larger
than θ.

We run all our estimators with all possible parameter combinations shown in
Table 2. For the naive estimator we use 10× R samples, while W1 and W2 use
both exactly R samples. When estimating with W2 we set Q = 200. To get a fair
comparison between the importance sampling estimators, we use the same set
of R samples for both W1 and W2. Notice that computing the exact probability
may fail due to problems with numerical computation. Such cases are omitted
from consideration. This experiment was run in R 3.35 on Linux.

As estimating small probabilities accurately is difficult, we are mainly inter-
ested in calculating the correct order of magnitude, i.e., the estimates we report
are always base-10 logarithms of Pr(q(S) ≥ θ). We also report the mean ab-
solute error (MAE) of these over some subsets of the parameter combinations.
Moreover, for some inputs one or more of the estimators fail to produce a posi-
tive, non-zero estimate. To get an overview of how prevalent this is, we compute
the recall over all 360 parameter combinations (the two values of R are handled
separately) by considering the fraction of cases where an estimate was obtained
of those where it was possible to compute the exact probability.

An overview of the results is given in Table 3 for R = 500. On the left we
show both MAE (as well as the minimum and maximum error) and recall when
considering all parameter combinations, and on the right we report the same
numbers for cases with θ ≥ 0.6. Larger values of θ are often more interesting in
practice, as we will show below when studying Pr(q(S) ≥ θ) in accessible subsets
of real data. We observe that the naive estimator has the lowest MAE in every

5 https://www.R-project.org
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case. However, it also has a very low recall, meaning that it only rarely produces a
useful estimate, but if it does, the estimate is rather accurate. (This is of course
what one would expect.) But especially for θ ≥ 0.6 the naive estimator is in
practice useless due to having almost zero recall. The asymptotic estimator, on
the other hand, always has the highest possible recall (= 1), while the importance
sampling estimators W1 and W2 fail to calculate a positive non-zero estimate
in about 15 to 25 percent of the cases. When θ ≥ 0, the importance sampling
estimators perform roughly at the same level as the asymptotic estimator in
terms of MAE. However, when considering performance for θ ≥ 0.6, we find that
the importance sampling estimators, especially W2, have substantially lower
MAE without losing that much in recall. We conclude that for high values of θ
the W2 estimator gives very good results.

6.2 Experiment 2: Estimating Pr(q(S) ≥ θ) in Accessible Subsets

As explained in Section 3, we estimate Pr(q(S) ≥ θ) from two components: 1)
the number of accessible subsets having q(S) ≥ θ), and 2) the total number of
accessible subsets. We estimate both components using Spectra+. To evalu-
ate the estimators we compare them against probabilities based on exhaustive
counts. Although these can be obtained through simply enumerating all patterns
and then counting the number of distinct accessible subsets, this is clearly only
feasible for relatively small datasets and description languages. In the following
we therefore limit our evaluation to datasets and maximum depth settings for
which it was possible to enumerate and count all accessible subsets within a day.

We have introduced three variants of Spectra+: the uniform variant that
uses uniform path sampling, the frequency variant that uses the frequencies of
the refinements to bias the sampling, and the quality variant that uses Weighted
Relative Accuracy to bias the sampling. On the left side of Table 4 we present a
comparison of these three variants when estimating Pr(q(S) ≥ θ) in the datasets.
Top part of the table shows datasets for which the true probability can be com-
puted, bottom part shows cases where only estimates are available. Note that
values of θ vary across datasets, as for some datasets there are fewer high ef-
fect size subsets than for others. Datasets having a numeric target attribute are
shown in italics. The description language corresponding to a maximum depth
of three is used, and the estimates are computed from 1000 path samples.

We observe that none of the estimators consistently has the highest accuracy.
All tend to catch the correct order of magnitude, with the exception of the
quality-biased sampler that is clearly the least accurate. Based on this we choose
to use the uniform sampling variant for the remaining experiments, as it is
the simplest to implement, and the other approaches do not seem to lead to
substantial practical benefits6 when estimating Pr(q(S) ≥ θ).

Next we investigate the effect of the number of path samples as well as the
maximum search depth on the accuracy of the estimates. For this we compare

6 We note, however, that for the simpler problem of merely counting accessible subsets
using the frequency-biased sampler may give more accurate results. These results are
omitted due to length restrictions.
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Fig. 1. Estimation accuracy of Pr(q(S) ≥ 0) in accessible subsets using uniform sam-
pling both as a function of the number of path samples (left) and search depth (right)
with those datasets and parameter combinations that we were able to compute the
exact counts by enumerating all accessible subsets.

estimates obtained using {500, 1000, 1500, 2000, 2500} path samples, as well as
maximum depths of 2, 3, and 4. The estimation accuracy is shown in Figure 1
for both cases. As we can see from the results, using more path samples does not
affect the quality of the estimates in most cases. For most data sets the estimator
underestimates the true probability slightly, but the effects are negligible. Given
that we are only interested in correctly estimating the order of magnitude, we use
1000 path samples for all remaining experiments. Similar results can be found for
maximum depth. Increasing maximum depth may increase the factor by which
the path sampling estimator underestimates, but the results are not consistent
across all data sets.

6.3 Exp. 3: The Odds of Finding Patterns Having Large Effect Sizes

Lastly, we run the estimators for arbitrary subsets on the real data sets, and
compute the odds as defined in Eq. 2. The probability estimates in arbitrary
subsets are shown on the right side of Table 4. We have indicated the most
reliable estimator in bold. Notice that the importance sampling estimator W2

tends to produce bad estimates for small values of θ, as we also observed above. In
general, if the naive estimator produces a non-zero positive estimate, we take this
to be the most reliable value. For small probabilities, however, this will fail, and
we must choose between the asymptotic estimator and W2. We choose W2 over
the asymptotic in situations where the estimators do not deviate substantially.

Finally, we compute the base-10 log odds between 1) the uniform estimator
in accessible subsets and 2) the estimator shown in bold for all subsets. We
can observe that, for all datasets, the probability of observing a high effect size
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Table 4. Estimates of log10(Pr(q(S) ≥ θ)) in accessible subsets (left side) as well as all
subsets (right side) obtained with different estimators for the lowest support threshold
used (0.05|D|) and a maximum search depth of 3. Target: Numeric / Boolean.

Accessible subsets θ All subsets Odds
Dataset Uniform Frequency Quality Exact Asymp. Naive W2

Abalone -0.52 -0.50 -0.19 -0.52 0.4 -10 -Inf -9.5 9.0
Abalone -1.71 -1.71 -1.56 -1.74 1.0 -44 -Inf -Inf 42.3

Breast cancer -0.15 -0.13 -0.04 -0.12 0.3 -1.3 -1.3 Fail 1.2
Breast cancer -0.37 -0.34 -0.16 -0.29 1.0 -10 -Inf Fail 9.6

Elections -0.44 -0.60 -0.44 -0.63 0.2 -1.9 -1.7 -22.2 1.3
Elections -1.46 -2.09 -1.51 -1.82 0.5 -6.1 -4.0 -19.3 2.5
Helsinki -0.49 -0.60 -0.16 -0.50 0.4 -20 -Inf -20 19.5
Helsinki -1.08 -1.08 -0.66 -1.16 1.0 -100 -Inf -Inf 98.9
Housing -0.35 -0.34 -0.15 -0.38 0.4 -1.5 -1.5 -1.6 1.2
Housing -1.23 -1.30 -0.94 -1.24 1.0 -8.1 -Inf -6.9 5.7

Mushroom -0.74 -0.26 - -0.27 0.1 -0.9 -0.9 -134 0.2
Mushroom -0.53 -0.76 - -0.55 0.2 -5.1 -Inf -134 4.6

Pima -0.44 -0.47 -0.15 -0.50 0.2 -1.4 -1.6 -Inf 1.2
Pima -1.88 -1.51 -1.36 -1.82 0.8 -7.5 -Inf -Inf 5.6

Adult -0.33 -0.28 -0.19 0.1 -1.0 -1.0 NA 0.7
Adult -1.89 - -2.43 0.2 -32 -Inf NA 30.1
Crime -0.39 -0.35 - 0.1 -1.0 -1.0 -12.4 0.6
Crime -0.76 -0.73 -0.38 0.4 -5.5 -4.5 -11.8 3.7

RedWine -0.33 -0.34 - 0.1 -0.3 -0.3 -0.85 0.0
RedWine -1.25 -1.22 -0.75 0.6 -8.3 -Inf -Inf 7.1

Spambase -0.22 -0.28 -0.02 0.2 -3.4 -3.4 -97 3.2
Spambase -0.86 -1.06 -0.59 1.0 -54 -Inf -97 53.1

Tic-tac-toe -0.28 -0.27 -0.05 0.1 -0.3 -0.3 -9.2 0.0
Tic-tac-toe -1.33 -1.43 -1.06 0.4 -2.8 -3.1 -9.2 1.8

Wages -0.83 -0.78 -0.36 0.4 -2.0 -1.9 -1.9 1.1
Wages -1.99 -2.27 -1.51 1.0 -7.1 -Inf -5.5 3.5

subgroup is several orders of magnitude higher in the accessible subsets than
what it is in arbitrary subsets having the same size distribution.

7 Conclusions

We have shown that realistic pattern languages contain large numbers of high-
quality subgroups; much more so than can be expected from randomly drawn
subsets. Although maybe not a surprising result on itself, this does have im-
plications for approaches that aim to eliminate false discoveries. Specifically,
statistical tests often rely on the null hypothesis that any subset of the data is
equally likely, but this assumption is clearly too weak. That is, one should expect
the unexpected in pattern mining: given a dataset and a description language, it
is very likely that high-quality subgroups can —and hence will— be found.
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Note that we do not claim that significance testing is unusable in the context
of pattern mining; existing approaches can certainly help to identify obvious
false discoveries. Our analysis does demonstrate, however, that it is of interest
to investigate significance tests for description languages (rather than individual
patterns) that take the inherent structure of accessible subsets into account.
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A Appendix

A.1 Derivation of Equation 7

By definition we have

Eunif [I{q(S) ≥ θ}] =
∑
S

p(S)I{q(S) ≥ θ},

where the sum is taken over all subsets of size k, and p(S) is the uniform distribu-
tion over all such subsets. Let p′(S) denote an alternative probability distribution

over subsets. Now we can multiply every term in the sum with p′(S)
p′(S) = 1, and

obtain ∑
S

p(S)I{q(S) ≥ θ} =
∑
S

p′(S)
p(S)

p′(S)
I{q(S) ≥ θ}

=
∑
S

p′(S)W (S)I{q(S) ≥ θ}

= Ebiased[W (S)I{q(S) ≥ θ}],

where the weighting factor W (S) = p(S)
p′(S) .

A.2 Computing W (S) Exactly

We discuss problems with exact computation of the weighting factor W (S) under
sampling without replacement. The main difficulty is in computing p′(S), as we
will show. First, let π(S) denote the set of all permutations of the items in
the set S, and let π denote one of such permutations, and denote by πi the
i:th item of π. Computing the probability of a given π ∈ π(S) under weighted
sampling without replacement requires updating the item-specific probabilites
after each item is drawn as described in the main text. Let Pr(πi | π1 . . . πi−1)
denote the probability of drawing item πi given that we have already drawn items
π1, . . . , πi−1. (This probability is obtained by setting p′(π1) = . . . = p′(πi−1) = 0,
and normalising the remaining probabilites so that they sum up to 1.) The
probability of drawing π is then expressed as

Pr(π) =

k∏
i=1

Pr(πi | π1 . . . πi−1),

and thus the exact probability p′(S) under weighted sampling without replace-
ment is given by

p′(S) =
∑

π∈π(S)

Pr(π) =
∑

π∈π(S)

k∏
i=1

Pr(πi | π1 . . . πi−1).

However, as there are k! permutations in π(S), computing the sum above is
infeasible for all but very small k.
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A.3 Estimating W (S) by Sampling Permutations from π(S)

We derive the result in Eq. 11 of the main text. We have

W (S) =
p(S)

p′(S)
=

(
n
k

)−1∑
π∈π(S) Pr(π)

=
(n− k)!

n!

k!∑
π∈π(S) Pr(π)︸ ︷︷ ︸
E[Pr(π)]−1

,

where the second term in the rightmost product in fact is equal to the inverse of
the expected value E[Pr(π)] given the uniform distribution over π ∈ π(S). (To
see this, note that E[Pr(π)] =

∑
π∈π(S)

1
k! Pr(π) = 1

k!

∑
π∈π(S) Pr(π).) Thus, we

can write

W (S) = E[Pr(S)]−1
(n− k)!

n!
.

Expressing W (S) in this manner allows us to compute an efficient approximation
of it, by using the basic sample mean estimator of E[Pr(S)]. This will require us
to sample a number of permutations, denoted by Q in the main text, but Q will
obviously be much smaller than k!, making the computation feasible.

A.4 Derivation of Equation 12

Let µ(S) denote the mean of the target values in the set S, and recall that µ and
σ are the mean and standard deviation of the target variable, respectively. By
definition, the first m elements of x are equal to v, while the remaining n −m
elements are equal to 1. This means that for an S of size k where k − l values
are chosen from the first m elements of x (and hence are equal to v), and the
remaining l values are from the n−m elements of x that are equal to 1, we must
have µ(S) = ((k− l)v+ l)/k. For (µ(S)−µ)/σ ≥ θ to hold for a given θ, at most
a certain number of values in S may thus be equal to 1, the others must be equal
to v. In other words, l, the number of 1s, must be upper bounded by some value.
Finding this upper bound is a matter of substituting µ(S) = ((k− l)v+ l)/k into

(µ(S)− µ)/σ ≥ θ and solving for l This gives l ≤ k(v−θσ−µ)
v−1 , which we round to

the nearest integer for which the inequality holds.
At least k − l items must thus be chosen from the first m elements of x,

while the remaining l elements can be chosen from any of the remaining ele-
ments. To count the number of sets that satisfy this, we partition the sets in
terms of the number of items they choose from the first m elements. There are∑k
i=k−l

(
m
i

)(
n−m
k−i

)
of such sets, and

(
n
k

)
sets of size k in total, giving Equation 12.


