

Netherlands
Bioinformatics
Centre

The research reported in this thesis has been supported by NBIC, the Nether-
lands Bioinformatics Centre (BioRange project SP4.3.1).

®

SIKS Dissertation Series No. 2010-01
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

(© 2010 Matthijs van Leeuwen

Cover photo taken in Hongkong, while visiting for CIKM’09.
Printed by Ridderprint, the Netherlands.

ISBN: 978-90-393-5235-9

Patterns that Matter

Pakkende Patronen

(met een samenvatting in het Nederlands)

Proefschrift
ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit
van het college voor promoties in het openbaar te verdedigen op
dinsdag 9 februari 2010 des middags te 2.30 uur
door

Matthijs van Leeuwen

geboren op 19 september 1981
te Woerden

Promotor: Prof.dr. A.P.J.M. Siebes

Contents

1 Introduction 1
2 Krimp — Mining Itemsets that Compress 7
2.1 Introduction. 8
2.2 Theory 10
2.3 Algorithms 18
2.4 Interlude. 25
2.5 Classification by Compression 26
2.6 Related Work 29
2.7 Experiments. L 31
2.8 Discussion 44
2.9 Conclusions Lo 46
3 Characterising the Difference 53
3.1 Introduction. 54
3.2 Preliminaries e 55
3.3 Database Dissimilarity 56
3.4 Characterising Differences 65
3.5 Related Work 70
3.6 Conclusions 71
4 Data Generation for Privacy Preservation 73
4.1 Introduction 74
4.2 The Problem, 75
4.3 Preliminaries e 78
4.4 Krimp Categorical Data Generator 78
4.5 Experiments. L o e 81
4.6 Discussion Lo 88
4.7 Conclusions Lo 90

CONTENTS

5 StreamKrimp — Detecting Change in Data Streams 91
5.1 Introduction 92
5.2 The Problem Assuming Unbounded Storage 93
5.3 The Problem Assuming Bounded Storage 95
5.4 The Algorithm 97
5.5 Experiments. L o 101
5.6 Related Work 106
5.7 Discussion 108
5.8 Conclusions e 108
6 Identifying the Components 109
6.1 Introduction 110
6.2 Problem Statement 111
6.3 Datasets 112
6.4 Model-Driven Component Identification 113
6.5 Data-Driven Component Identification 118
6.6 Discussion 122
6.7 Related Work 123
6.8 Conclusion e 124
7 Compressing Tags to Find Interesting Media Groups 125
7.1 Introduction 126
7.2 The Problem 128
7.3 The Algorithm L 130
7.4 Data Pre-processing L. 134
7.5 Experiments. L 136
7.6 Related Work 142
7.7 Conclusions 143
8 Conclusions 149
Bibliography 153
Index 163

ii

Chapter

Introduction

Over the past 30 years, innovations in Computer Science and Information Tech-
nology have radically changed the world. We now live in the ‘digital age’ and
everything and everybody is connected. For this thesis, two phenomena in
particular make the difference with, say, 30 years ago. First, with increasing
storage capacities becoming available, more and more data is stored and thus
becomes available for all kinds of purposes. Second, the Internet has made
collecting and organising data world-wide quick, cheap and easy. Companies
have established specialised ‘data warehouses’ with the sole purpose to collect
as much company data as possible. Hence, the need arises for smart methods
that can be used to analyse large amounts of data and extract useful informa-
tion from it. Besides, since computers have become much faster, smaller and
cheaper, there has been a huge increase in the computational power available,
making large-scale data analysis possible.

Bioinformatics

This situation is true for many different businesses, but also for many disci-
plines in science. As an example, let us consider the field of Bioinformatics.
This is the interdisciplinary area between Biology and Computer Science, in
which, simply put, computers are used to analyse biological datasets. Every-
one is aware of many problems that are investigated in this field. For example,
bioinformaticians investigate the causes of diseases and help develop drugs to
cure these. Results of such research lines may directly benefit many ill people
all over the world. As a second example, the ‘tree of life’ as we currently know
it is a result of computational evolutionary biology.

A typical bioinformatics research area is sequence analysis, well-known for
the international Human Genome Project that aimed to map all genes of the hu-

1. INTRODUCTION

man genome. Other major areas are, e.g. analysis of gene expression, protein
structure prediction, modelling biological systems, and computational evolu-
tionary biology.

Technological advances have resulted in more and larger datasets in bioin-
formatics. Especially high—throughput screening methods contributed to this.
A prime example of this is microarray technology, which can be used to mea-
sure changes in the expression of hundreds of genes at once. Ongoing advances
with nanotechnology and ‘lab—on—a—chip’ technology can be expected to give
plenty of new data opportunities in the (near) future.

As a result, databases with different kinds of data are already available
in bioinformatics: databases with genome sequences, gene expression data,
protein structures, scientific articles, biochemical data, physical data, and so
on. For many research problems, it is required to combine information from
multiple sources. This can be complicated, as these databases are often large,
located in different physical locations and regularly contain missing and/or
conflicting data.

With plenty of (complex) data readily available, new data being collected
all the time, and so many important open problems, it is obvious that bioinfor-
matics is an important field of research. To be able to solve problems, bioin-
formatics needs adequate generic methods for data analysis, data exploration,
and knowledge discovery.

Data Mining

Finding patterns in data has been the subject of research for a long time.
Within Mathematics, Statistics has a very long history and many well-founded
methods have been developed. A related discipline within Artificial Intelli-
gence is Machine Learning, which aims to allow computers to learn from data.
With the upcoming of computers and Database Technology, and combining
techniques from both disciplines, a new paradigm emerged in the 90s: Data
Mining, or Knowledge Discovery in Databases. Nowadays, this is a flourishing
field within Computer Science. It aims to develop generic methods that can
be used to extract knowledge from large amounts of data using a computer. In
other words, Data Mining seeks to answer the problems that came along with
the two phenomena mentioned at the start of this section.

Broadly speaking, two types of data mining can be distinguished: Predictive
Data Mining and Descriptive Data Mining. The main difference between these
two types lies in their goals. The former intends to build a model on the data
that can be used to predict, e.g. stock prices in the near future, whereas the
latter intends to build a model that describes what is in the data. Or, in other
words, one can either try to use the past to predict the future, or try to describe

the past to discover useful knowledge.

In this thesis, we only consider Descriptive Data Mining, as we want to get
as much insight in the data as possible. Our goal is to avoid ‘black boxes’ —
we prefer to use methods that allow for human inspection and interpretation,
in order to maximise our understanding of both the data and the methods.
One of the best-known concepts in Descriptive Data Mining that allows for
easy interpretation is pattern mining [50,87]. More in particular, we consider
theory mining [81], which considers patterns that describe subsets of a database.
Advantages of these patterns are that they are easy to interpret individually,
and that it is always clear which part of the database a pattern describes.

Informally, the task is to find all ‘interesting’ subgroups, given a database,
a pattern language and a selection criterion. Here, the selection criterion is
used to determine which patterns are ‘interesting’ and which are not. Coming
up with an adequate selection criterion is more difficult than it may seem, as
it is usually extremely hard to specify a priori what is ‘interesting’. A famous
instance of theory mining is frequent pattern mining [7], which uses a minimal
frequency constraint as selection criterion: the task is to identify all patterns
that occur at least so many times in the database.

The Problem

Since its introduction almost 20 years ago, frequent pattern mining has received
ample attention and many algorithms have been designed [45]. However, fre-
quent pattern mining, and pattern mining in general, suffers from a problem
that makes using it in practice very difficult. That is, choosing a suitable ‘in-
terestingness’ constraint is virtually impossible. When a tight (high frequency)
constraint is chosen, only very few and unsurprising patterns are selected, while
a loose (low frequency) constraint results in humongous amounts of patterns.
This is appropriately dubbed the pattern explosion.

The severity of this pattern explosion is aptly illustrated by the fact that the
set of frequent patterns is often orders of magnitude larger than the database
from which they originate. That is, the complete description of the data is
much larger than the data itself. Clearly, this does not match the objective of
Descriptive Data Mining; it is more insightful for a domain expert to manually
inspect the entire database than the pattern set.

In this thesis, we will address the pattern explosion in pattern mining. The
research problem can be stated as:

Develop methods that find small, human—interpretable, pattern—based
descriptive models on large datasets.

1. INTRODUCTION

Note that this problem statement is rather generic, but this very well
matches our objectives. From a data mining perspective, the problem is very
fundamental and this asks for fundamental solutions; we are dealing with data
mining foundations here. Any methods developed must be applicable to a large
variety of situations; to all sorts of problems and different kinds of data, both
in bioinformatics and other disciplines.

Challenges

The biggest challenge lies in designing a measure that decides whether a model
is good or not. What makes a pattern ‘interesting’? What makes a model
‘good’? Especially without any a priori knowledge on the data and/or appli-
cation, this seems hard to define.

Even when a priori knowledge is available, it is often problematic to come
up with a suitable measure. In bioinformatics, for example, researchers that
have data available for analysis do not always know what is in there and what
they are looking for. “Tell me something interesting” is not very helpful when
designing an interestingness measure. Hence, we should come up with a very
generic quality measure for our models.

In addition to this challenge, there are other difficulties that need attention.
To name a few:

i The entire database must be described by its model.
ii To keep models as small as possible, redundancy should be avoided.

iii Since there are many patterns, there are also many pattern-based models.
We have to ensure that we find a good model within reasonable time.

iv Large datasets should not pose any problems, so efficiency in terms of com-
putation speed and storage requirements is an important issue.

Approach and Contributions

The most important change with respect to ‘traditional’ pattern mining is
that we do not look at individual patterns, but at pattern sets that make up
our models. We argue that the pattern explosion is caused by determining
‘interestingness’ for each pattern individually, and that it is far more effective
and fruitful to consider a set of patterns as a whole.

To this end, we use compression. That is, we propose the following solution
to the problem at hand:

The best set of patterns is that set that compresses the data best.

In Chapter 2, we introduce the theoretical foundations on which our models
and algorithms are built. For this, we use the Minimum Description Length
principle [48], which is a practical version of Kolmogorov Complexity [73]. MDL
says that, given data and a set of models, the best model is that model that
compresses the data best. The Kolmogorov Complexity of given data is the
length of the shortest computer program that outputs this data. Contrary to
MDL though, Kolmogorov Complexity is uncomputable.

We introduce pattern-based models that compress the data and heuristic
methods that find such models. The main algorithm, called KrRIMP, will be used
as groundwork for all research carried out throughout this thesis. Each subse-
quent chapter shows how compression can be applied to a different Knowledge
Discovery problem. The following gives a brief overview.

Characterising differences In Chapter 3, we show how compression can be
used to both quantify and characterise differences between databases.
We introduce a generic database dissimilarity measure and show that the
pattern-based KRIMP models allow for insightful inspection and visuali-
sations.

Preserving privacy Chapter 4 deals with a very contemporary subject: pri-
vacy in data. We propose to preserve people’s privacy by replacing the
original data with synthetic, generated data. We introduce an algorithm
that generates data from a KRIMP model that is virtually indiscernible
from the original data, while preserving privacy.

Detecting changes In many cases, one would like to know immediately when
change occurs. Consider, e.g. stock markets or very ill patients in a
hospital. In Chapter 5, we present a compression-based method that
detects sudden changes over time.

Identifying database components Databases usually contain mixtures of
entity types that each have their own characteristic behaviour. For su-
permarket data, for example, we expect retired people to buy different
products than students. It can be very beneficial to identify and char-
acterise these database components. For this purpose we introduce two
methods, again based on compression, in Chapter 6.

Finding interesting groups In Chapter 7, we use compression to find co-
herent groups in a database and apply this to tag data, obtained from
Flickr!, to find interesting groups of photos. The main difference with

Lyww.flickr.com

1. INTRODUCTION

the previous problem is that we do not attempt to characterise the en-
tire database. Instead, we focus on small groups that are homogeneous
within, but different from the rest of the database.

Each chapter contains an extensive experimental evaluation, to show that
the proposed generic methods perform well under a variety of realistic condi-
tions. Throughout this thesis, we consider different kinds of data and databases
from different sources. The most widely used data type is standard ‘market
basket data’, or itemset data, which basically means that we have a matrix
consisting of binary values.

We consider both real and synthetic data. Obviously, synthetic data espe-
cially plays a major role in Chapter 4. In Chapter 5, we consider data streams
for our change detection scheme and we use large tag datasets from Flickr in
Chapter 7.

Chapter 2

Krimp — Mining ltemsets that
Compress

One of the major problems in pattern mining is the explosion of the number
of results'. Tight constraints reveal only common knowledge, while loosening
these leads to an explosion in the number of returned patterns. This is caused
by large groups of patterns essentially describing the same set of transactions.
In this chapter we approach this problem using the MDL principle: the best
set of patterns is that set that compresses the database best.

For this task we introduce the KrRiMP algorithm. Experimental evaluation
shows that typically only hundreds of itemsets are returned; a dramatic re-
duction, up to 7 orders of magnitude, in the number of frequent item sets.
These selections, called code tables, are of high quality. This is shown with
compression ratios, swap-randomisation, and the accuracies of the code table-
based KRIMP classifier, all obtained on a wide range of datasets. Further, we
extensively evaluate the heuristic choices made in the design of the algorithm.

I This chapter has been accepted for publication as [112]: J. Vreeken, M. van Leeuwen
& A. Siebes. Krimp — Mining Itemsets that Compress. In Data Mining and Knowledge
Discovery, Springer.
It is an extended version of work published at SDM’06 as A. Siebes, J. Vreeken & M. van
Leeuwen [101] and at ECML PKDD’06 as M. van Leeuwen, J. Vreeken & A. Siebes [70].

7

2. KRIMP — MINING ITEMSETS THAT COMPRESS

2.1 Introduction

Patterns

Without a doubt, pattern mining is one of the most important concepts in
data mining. In contrast to models, patterns describe only part of the data
[50,87]. In this thesis, we consider one class of pattern mining problems, viz.,
theory mining [81]. In this case, the patterns describe interesting subsets of the
database.

Formally, this task has been described by Mannila & Toivonen [80] as fol-
lows. Given a database D, a language £ defining subsets of the data and a
selection predicate ¢ that determines whether an element ¢ € L describes an
interesting subset of D or not, the task is to find

T(L,D,q)={¢ecL]qD,¢)is true }.

That is, the task is to find all interesting subgroups.

The best known instance of theory mining is frequent set mining [7]; this is
the problem we will consider throughout this chapter. The standard example
for this is the analysis of shopping baskets in a supermarket. Let Z be the set
of items the store sells. The database D consists of a set of transactions in
which each transaction ¢ is a subset of Z. The pattern language £ consists of
itemsets, i.e. again sets of items. The support of an itemset X in D is defined
as the number of transactions that contain X, i.e.

suppp(X) = |{t e D | X C t}|.

The ‘interestingness’ predicate is a threshold on the support of the itemsets,
the minimal support: minsup. In other words, the task in frequent set mining
is to compute

{X € L | suppp(X) > minsup}.

The itemsets in the result are called frequent itemsets. Since the support of an
itemset decreases w.r.t. set inclusion, the A Priori property,

X CY = suppp(Y) < suppp(X),

a simple level-wise search algorithm suffices to compute all the frequent item-
sets. Many efficient algorithms for this task are known, see, e.g. Goethals &
Zaki [45]. Note, however, that since the size of the output can be exponential
in the number of items, the term efficient is used w.r.t. the size of the out-
put. Moreover, note that whenever £ and ¢ satisfy an A Priori like property,
similarly efficient algorithms exist [80].

8

2.1. Introduction

Sets of Patterns

A major problem in frequent itemset mining, and pattern mining in general, is
the so-called pattern explosion. For tight interestingness constraints, e.g. a high
minsup threshold, only few, but well-known, patterns are returned. However,
when the constraints are loosened, pattern discovery methods quickly return
humongous amounts of patterns; the number of frequent itemsets is often many
orders of magnitude larger than the number of transactions in the dataset.

This pattern explosion is caused by the locality of the minimal support
constraint; each individual itemset that satisfies the constraint is added to the
result set, independent of the already returned sets. Hence, we end up with a
rather redundant set of patterns, in which many patterns essentially describe
the same part of the database. One could impose additional constraints on the
individual itemsets to reduce their number, such as closed frequent itemsets
[91]. While this somewhat alleviates the problem, redundancy remains an
issue.

We take a different approach: rather than focusing on the individual fre-
quent itemsets, we focus on the resulting set of itemsets. That is, we want
to find the best set of (frequent) itemsets. The question is, of course, what is
the best set? Clearly, there is no single answer to this question. For example,
one could search for small sets of patterns that yield good classifiers, or show
maximal variety [60,61].

We view finding the best set of itemsets as an induction problem. That
is, we want to find the set of patterns that describe the database best. There
are many different induction principles. So, again the question is which one to
take?

The classical statistical approach [104] would be to basically test hypotheses,
meaning that we would have to test every possible set of itemsets. Given the
typically huge number of frequent itemsets and the exponentially larger number
of sets of itemsets, testing all these pattern sets individually does not seem a
computationally attractive approach.

Alternatively, the Bayesian approach boils down to updating the a priori
distribution with the data [16]. This update is computed using Bayes’ rule,
which requires the computation of P(D | M). How to define this probability
for sets of frequent itemsets is not immediately obvious. Moreover, our pri-
mary goal is to find a descriptive model, not a generative one?. For the same
reason, principles that are geared towards predictive models, such as Statistical
Learning Theory [109], are not suitable. Again, we are primarily interested in
a descriptive model, not a predictive one.

2 Although, in our recent research, we have built generative models from the small number
of selected itemsets that generates data virtually indiscernible from the original [111].

2. KRIMP — MINING ITEMSETS THAT COMPRESS

The Minimal Description Length Principle (MDL) [48,49,97] on the other
hand, is geared towards descriptions of the data. One could summarise this
approach by the slogan: the best model compresses the data best. By taking this
approach we do not try to compress the set of frequent itemsets, rather, we want
to find that set of frequent itemsets that yields the best lossless compression
of the database.

The MDL principle provides us a fair way to balance the complexities of the
compressed database and the encoding. Note that both need to be considered
in the case of lossless compression. Intuitively, we can say that if the encoding
is too simple, i.e. it consists of too few itemsets, the database will hardly
be compressed. On the other hand, if we use too many, the code table for
coding/decoding the database will become too complex.

Considering the sum of the complexities of the compressed data and the
encoding is the cornerstone of the MDL principle; it ensures that the model
will not be overly elaborate or simplistic w.r.t. the complexity of the data.

Although MDL removes the need for user-defined parameters, it comes with
its own problems: only heuristics, no guaranteed algorithms. However, our
experiments show that these heuristics give a dramatic reduction in the number
of itemsets. Moreover, the set of patterns discovered is characteristic of the
database as independent experiments verify; see Section 2.7.

We are not the first to address the pattern explosion, nor are we the first
to use MDL. We are the first, however, to employ the MDL principle to select
the best pattern set. For a discussion of related work, see Section 2.6.

This chapter is organised as follows. First, we cover the theory of using
MDL for selecting itemsets, after which we define our problem formally and
analyse its complexity. We introduce the heuristic KRIMP algorithm for solv-
ing the problem in Section 2.3. In a brief interlude we provide a small sample
of the results. We continue with theory on using MDL for classification, and
introduce the KRIMP classifier in Section 2.5. Related work is discussed in Sec-
tion 2.6. Section 2.7 provides extensive experimental validation of our method,
as well as an evaluation of the heuristic choices made in the design of the
KRiMmP algorithm. We round up with discussion in Section 2.8 and conclude in
Section 2.9.

2.2 Theory

In this section we state our problem formally. First we briefly discuss the MDL
principle. Next we introduce our models, code tables. We show how we can
encode a database using such a code table, and what the total size of the coded
database is. With these ingredients, we formally state the problems studied in
this chapter. Throughout this thesis all logarithms have base 2.

10

2.2. Theory

MDL

MDL (Minimum Description Length) [48,97], like its close cousin MML (Min-
imum Message Length) [113], is a practical version of Kolmogorov Complex-
ity [73]. All three embrace the slogan Induction by Compression. For MDL,
this principle can be roughly described as follows.

Given a set of models® H, the best model H € H is the one that minimises

L(H)+ L(D|H)
in which
— L(H) is the length, in bits, of the description of H, and

— L(D|H) is the length, in bits, of the description of the data when encoded
with H.

This is called two-part MDL, or crude MDL. As opposed to refined MDL, where
model and data are encoded together [49]. We use two-part MDL because
we are specifically interested in the compressor: the set of frequent itemsets
that yields the best compression. Further, although refined MDL has stronger
theoretical foundations, it cannot be computed except in only some special
cases.

To use MDL, we have to define what our models ‘H are, how an H € ‘H
describes a database, and how all of this is encoded in bits.

MDL for Itemsets

The key idea of our compression based approach is the code table. A code table
is a simple two-column translation table that has itemsets on the left-hand side
and a code for each itemset on its right-hand side. With such a code table we
find, through MDL, the set of itemsets that together optimally describe the
data.

Definition 1. Let Z be a set of items and C a set of code words. A code table
CT over I and C is a two-column table such that:

1. The first column contains itemsets, that is, subsets over Z. This column
contains at least all singleton itemsets.

2. The second column contains elements from C, such that each element of
C occurs at most once.

3 MDL-theorists tend to talk about hypothesis in this context, hence the H; see Griinwald
[48] for the details.

11

2. KRIMP — MINING ITEMSETS THAT COMPRESS

An itemset X, drawn from the powerset of T, i.e. X € P(I), occurs in CT,
denoted by X € CT iff X occurs in the first column of CT, similarly for a
code C € C. For X € CT, codecr(X) denotes its code, i.e. the corresponding
element in the second column. We call the set of itemsets {X € CT} the
coding set C'S. For the number of itemsets in the code table we write |CT),
i.e. we define |CT| = |{X € CT}|. Likewise, |CT \ Z| indicates the number of
non-singleton itemsets in the code table.

To encode a transaction ¢t from database D over Z with code table CT, we
require a cover function cover(CT,t) that identifies which elements of C'T are
used to encode t. The parameters are a code table CT and a transaction t,
the result is a disjoint set of elements of C'T" that cover ¢. Or, more formally, a
cover function is defined as follows.

Definition 2. Let D be a database over a set of items I, t a transaction drawn
from D, let CT be the set of all possible code tables over I, and C'T a code table
with CT € CT. Then, cover : CT x P(Z) » P(P(Z)) is a cover function iff it
returns a set of itemsets such that

1. cover(CT,t) is a subset of C'S, the coding set of CT, i.e.
X € cover(CT,t) = X € CT

2. if X,Y € cover(CT,t), then either X =Y or XNY =0

3. the union of all X € cover(CT,t) equals t, i.e.
t= UXGcover(CT,t) X

We say that cover(CT,t) covers t. Note that there exists at least one well-
defined cover function on any code table CT over T and any transaction t €
P(Z), since CT contains at least the singleton itemsets from Z.

To encode a database D using code table C'T" we simply replace each trans-
action t € D by the codes of the itemsets in the cover of ¢,

t - { codecr(X) | X € cover(CT,t) }.

Note that to ensure that we can decode an encoded database uniquely we
assume that C is a prefiz code, in which no code is the prefix of another code [34].
(Confusingly, such codes are also known as prefiz-free codes [73].)

Since MDL is concerned with the best compression, the codes in CT" should
be chosen such that the most often used code has the shortest length. That
is, we should use an optimal prefix code. Note that in MDL we are never
interested in materialised codes, but only in the complexities of the model
and the data. Therefore, we are only interested in the lengths of the codes of

12

2.2. Theory

itemsets X € CT. As there exists a nice correspondence between code lengths
and probability distributions (see, e.g. [73]), we can calculate the optimal code
lengths through the Shannon entropy. So, to determine the complexities we do
not have to operate an actual prefix coding scheme such as Shannon-Fano or
Huffman encoding.

Theorem 1. Let P be a distribution on some finite set D, there exists an
optimal prefix code C on D such that the length of the code for d € D, denoted
by L(d) is given by

L(d) = —log(P(d)).

Moreover, this code is optimal in the sense that it gives the smallest expected
code size for data sets drawn according to P. For the proof, please refer to
Theorem 5.4.1 in Cover & Thomas [34].

The optimality property means that we introduce no bias using this code
length. The probability distribution induced by a cover function is, of course,
simply given by the relative usage frequency of each of the item sets in the code
table. To determine this, we need to know how often a certain code is used.
We define the usage count of an itemset X € CT as the number of transactions
t from D where X is used to cover. Normalised, this frequency represents the
probability that that code is used in the encoding of an arbitrary ¢t € D. The
optimal code length [73] then is —log of this probability, and a code table is
optimal if all its codes have their optimal length. Note that we use fractional
lengths, not integer-valued lengths of materialised codes. This ensures that the
length of a code accurately represents its usage probability, and since we are not
interested in materialised codes, only relative lengths are of importance. After
all, our ultimate goal is to score the optimal code table and not to actually
compress the data. More formally, we have the following definition.

Definition 3. Let D be a transaction database over a set of items I, C a prefix
code, cover a cover function, and CT a code table over T and C. The usage
count of an itemset X € CT is defined as

usagep(X) =|{ t €D | X € cover(CT,t) }|.

The probability of X € CT being used in the cover of an arbitrary transaction
t € D s thus given by

usagep(X)
> yeor usagep(Y)
The codect(X) for X € CT is optimal for D iff

P(X|D) =

L(codecr (X)) = |codecr(X)| = —log(P(X|D)).

13

2. KRIMP — MINING ITEMSETS THAT COMPRESS

A code table C'T is code-optimal for D iff all its codes,
{ codecr(X) | X € CT },

are optimal for D.

From now onward we assume that code tables are code-optimal for the
database they are induced on, unless we state differently.

Now, for any database D and a code table C'T" over the same set of items Z
we can compute L(D | CT). It is simply the summation of the encoded lengths
of the transactions. The encoded size of a transaction is simply the sum of
the sizes of the codes of the itemsets in its cover. In other words, we have the
following trivial lemma.

Lemma 2. Let D be a transaction database over T, CT be a code table over T
and code-optimal for D, cover a cover function, and usage the usage function
for cover.

1. For any t € D its encoded length, in bits, denoted by L(t | CT), is

L(t| CT) = > L{codecr(X)).

X €cover(CT,t)

2. The encoded size of D, in bits, when encoded by CT, denoted L(D | CT),
18

L(D|CT) =Y L(t|CT).
teD

With Lemma 2, we can compute L(D | H). To use the MDL principle, we
still need to know what L(H) is, i.e. the encoded size of a code table.

Recall that a code table is a two-column table consisting of itemsets and
codes. As we know the size of each of the codes, the encoded size of the second
column is easily determined: it is simply the sum of the lengths of the codes.
For encoding the itemsets, the first column, we have to make a choice.

A naive option would be to encode each item with a binary integer encoding,
that is, using log(Z) bits per item. Clearly, this is hardly optimal; there is no
difference in encoded length between highly frequent and infrequent items.

A better choice is to encode the itemsets using the codes of the simplest code
table, i.e. the code table that contains only the singleton itemsets X € Z. This
code table, with optimal code lengths for database D, is called the standard
code table for D, denoted by ST. It is the optimal encoding of D when nothing
more is known than just the frequencies of the individual items; it assumes

14

2.2. Theory

the items to be fully independent. As such, it provides a practical bound: ST
provides the simplest, independent, description of the data that compresses
much better than a random code table. This encoding allows us to reconstruct
the database up to the names of the individual items. With these choices, we
have the following definition.

Definition 4. Let D be a transaction database over T and CT a code table
that is code-optimal for D. The size of CT, denoted by L(CT | D), is given by

L(CT | D) = > |codest (X)| + |codecr(X)).
XeCT:usagep (X)#0

Note that we do not take itemsets with zero usage into account. Such itemsets
are not used to code. We use L(CT) wherever D is clear from context.

With these results we know the total size of our encoded database. It is
simply the size of the encoded database plus the size of the code table. That
is, we have the following result.

Definition 5. Let D be a transaction database over I, let C'T be a code table
that is code-optimal for D and cover a cover function. The total compressed
size of the encoded database and the code table, in bits, denoted by L(D,CT) is
given by

L(D,CT)=L(D | CT)+ L(CT | D).

Now that we know how to compute L(D, CT'), we can formalise our problem
using MDL. Before that, we discuss three design choices we did not mention so
far, because they do not influence the total compressed size of a database.

First, when encoding a database D with a code table CT, we do not mark
the end of a transaction, i.e. we do not use stop-characters. Instead, we
assume a given framework that needs to be filled out with the correct items
upon decoding. Since such a framework adds the same additive constant to
L(D | CT) for any CT over Z, it can be disregarded.

Second, for more detailed descriptions of the items in the decoded database,
one could add an ASCII table giving the names of the individual items to a
code table. Since such a table is the same for all code tables over Z, this is
again an additive constant we can disregard for our purposes.

Last, since we are only interested in the complexity of the content of the
code table, i.e. the itemsets, we disregard the complexity of its structure. That
is, like for the database, we assume a static framework that fits any possible
code table, consisting of up to |P(Z)| itemsets, and is filled out using the above
encoding. The complexity of this framework is equal for any code table CT
and dataset D over Z, and therefore we can also disregard this third additive
constant when calculating L(D, CT).

15

2. KRIMP — MINING ITEMSETS THAT COMPRESS

The Problem

Our goal is to find the set of itemsets that best describe the database D. Recall
that the set of itemsets of a code table, i.e. {X € C'T}, is called the coding set
CS. Given a coding set, a cover function and a database, a (code-optimal) code
table CT follows automatically. Therefore, each coding set has a corresponding
code table; we will use this in formalising our problem.

Given a set of itemsets F, the problem is to find a subset of F which leads
to a minimal encoding; where minimal pertains to all possible subsets of F.
To make sure this is possible, F should contain at least the singleton item sets
X € Z. We will call such a set, a candidate set. By requiring the smallest coding
set, we make sure the coding set contains no unused non-singleton elements,
i.e. usagecr(X) > 0 for any non-singleton itemset X € CT.

More formally, we define the problem as follows.

Problem 1 (Minimal Coding Set). LetZ be a set of items and let D be a dataset
over I, cover a cover function, and F a candidate set. Find the smallest coding
set C'S C F such that for the corresponding code table C'T' the total compressed
size, L(D,CT), is minimal.

A solution for the Minimal Coding Set Problem allows us to find the ‘best’
coding set from a given collection of itemsets, e.g. (closed) frequent itemsets
for a given minimal support. If F = {X € P(Z) | suppp(X) > 0}, i.e. when F
consists of all itemsets that occur in the data, there exists no candidate set F’
that results in a smaller total encoded size. Hence, in this case the solution is
truly the minimal coding set for D and cover.

In order to solve the Minimal Coding Set Problem, we have to find the
optimal code table and cover function. To this end, we have to consider a
humongous search space, as we will detail in the next subsection.

How Hard is the Problem?

The number of coding sets does not depend on the actual database, and nor
does the number of possible cover functions. Because of this, we can compute
the size of our search space rather easily.
A coding set contains the singleton itemsets plus an almost arbitrary subset
of P(Z). Almost, since we are not allowed to choose the |Z| singleton itemsets.
In other words, there are

2171 |7]-1

kzzo (2|I| —ILI\ — 1)

16

2.2. Theory

possible coding sets. In order to determine which one of these minimises the
total encoded size, we have to consider all corresponding (code-optimal) code
tables using every possible cover function. Since every itemset X € CT" can oc-
cur only once in the cover of a transaction and no overlap between the itemsets
is allowed, this translates to traversing the code table once for every transac-
tion. However, as each possible code table order may result in a different cover,
we have to test every possible code table order per transaction to cover. Since
a set of n elements admits n! orders, the total size of the search space is as
follows.

Lemma 3. For one transaction over a set of items I, the number of possible
ways to cover it is given by NCP(Z).

217l |z|—-1

Izl 7| -
NCP(I)= > <2]Lﬂ 1>><(k+|I)!

k=0

So, even for a rather small set 7 and a database of only one transaction, the
search space we are facing is already huge. Table 2.1 gives an approximation
of NCP for the first few sizes of Z. Clearly, the search space is far too large to
consider exhaustively.

To make matters worse, there is no useable structure that allows us to prune
levelwise as the attained compression is not monotone w.r.t. the addition of
itemsets. So, without calculating the usage of the itemsets in CT', it is generally
impossible to call the effects (improvement or degrading) on the compression
when an itemset is added to the code table. This can be seen as follows.

Given a database D, itemsets X and Y such that X C Y, and a coding set
CS, all over Z. The addition of X to CS, can lead to a degradation of the
compression, first and foremost as X may add more complexity to the code
table than is compensated for by using X in encoding D. Second, X may get
in ‘the way’ of itemsets already in C'S, as such providing those itemsets with
lower usage, longer codes and thus leading to massively worse compression.
Instead, let us consider adding Y. While more complex, exactly those items

Table 2.1: The number of cover possibilities for a database of one (1) transac-
tion over Z.

\Z| NCP(Z) |I] NCP(I)

1 1 4 2.70 x 1012
2 8 5 1.90 x 1034
3 8742 6 4.90 x 10%7

17

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Y \ X may replace the hindered itemsets. As such Y may circumvent getting
‘in the way’, and thus lead to an improved compression. However, this can just
as well be the other way around, as exactly those items can also lead to low
usage and/or overlap with other/more existing itemsets in C'S.

2.3 Algorithms

In this section we present algorithms for solving the problem formulated in the
previous section. As shown above, the search space one needs to consider for
finding the optimal code table is far too large to be considered exhaustively.
We therefore have to resort to heuristics.

Basic Heuristic

To cut down a large part of the search space, we use the following simple greedy
search strategy:

— Start with the standard code table ST, containing only the singleton
itemsets X € 7.

— Add the itemsets from F one by one. If the resulting codes lead to a
better compression, keep it. Otherwise, discard the set.

To turn this sketch into an algorithm, some choices have to be made. Firstly,
in which order are we going to encode a transaction? So, what cover function
are we going to employ? Secondly, in which order do we add the itemsets?
Finally, do we prune the newly constructed code table before we continue with
the next candidate itemset or not?

Before we discuss each of these questions, we briefly describe the initial
encoding. This is, of course, the encoding with the standard code table. For
this, we need to construct a code table from the elements of Z. The algorithm
called STANDARDCODETABLE, given in pseudo-code as Algorithm 1, returns
such a code table. It takes a set of items and a database as parameters and
returns a code table. Note that for this code table all cover functions reduce to
the same, namely the cover function that replaces each item in a transaction
with its singleton itemset. As the singleton itemsets are mutually exclusive, all
elements X € 7 will be used suppp(X) times by this cover function.

Standard Cover Function

From the problem complexity analysis in the previous section it is quite clear
that finding an optimal cover of the database is practically impossible, even

18

2.3. Algorithms

Algorithm 1 Standard Code Table
STANDARDCODETABLE(D) :
1. CT « 0
2. for all X € 7 do
3. insert X into CT
4. wusagep(X) «— suppp(X)
5
6
7

codecr(x) < optimal code for X
. end for
. return CT

if we are given the optimal set of itemsets as the code table: examining all
|CT|! possible permutations is already virtually impossible for one transaction,
let alone expanding this to all possible combinations of permutations for all
transactions.

We therefore employ a heuristic and introduce a standard cover function
which considers the code table in a fixed order. The pseudo-code for this
STANDARDCOVER algorithm is given as Algorithm 2. For a given transaction
t, the code table is traversed in a fixed order. An itemset X € C'T is included
in the cover of ¢ iff X C ¢. Then, X is removed from ¢ and the process continues
to cover the uncovered remainder, i.e. ¢\ X. Using the same order for every
transaction drastically reduces the complexity of the problem, but leaves the
choice of the order.

Again, considering all possible orders would be best, but is impractical at
best. A more prosaic reason is that our algorithm will need a definite order;
random choice does not seem the wisest of ideas. When choosing an order, we
should take into account that the order in which we consider the itemsets may
make it easier or more difficult to insert candidate itemsets into an already
sorted code table.

We choose to sort the elements X € CT first decreasing on cardinality,
second decreasing on support in D and thirdly lexicographically increasing to
make it a total order. To describe the order compactly, we introduce the
following notation. We use | to indicate an attribute is sorted descending, and
T to indicate it is sorted ascending:

|X| | suppp(X)]| lexicographically 1

We call this the Standard Cover Order. The rationale is as follows. To
reach a good compression we need to replace as many individual items as
possible, by as few and short as possible codes. The above order gives priority
to long itemsets, as these can replace as many as possible items by just one
code. Further, we prefer those itemsets that occur frequently in the database

19

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Algorithm 2 Standard Cover
STANDARDCOVER(t, CT) :
S «+ smallest X € CT in Standard Cover Order for which X C ¢
if t\ S =0 then
Res — {S}
else
Res — {S} U STANDARDCOVER(t \ S,CT)
end if
return Res

N oA w N e

to be used as often as possible, resulting in high usage values and thus short
codes. We rely on MDL not to select overly specific itemsets, as such sets can
only be infrequently used and would thus receive relatively long codes.

Standard Candidate Order

Next, we address the order in which candidate itemsets will be regarded. Prefer-
ably, the candidate order should be in concord with the cover strategy detailed
above. We therefore choose to sort the candidate itemsets such that long, fre-
quently occurring itemsets are given priority. Again, to make it a total order
we thirdly sort lexicographically. So, we sort the elements of F as follows:

suppp(X) | |X]|] lexicographically T

We refer to this as the Standard Candidate Order. The rationale for it is as
follows. Itemsets with the highest support, those with potentially the shortest
codes, end up at the top of the list. Of those, we prefer the longest sets first,
as these will be able to replace as many items as possible. This provides the
search strategy with the most general itemsets first, providing ever more specific
itemsets along the way.

A welcome advantage of the standard orders for both the cover function and
the candidate order is that we can easily keep the code table sorted. First, the
length of an itemset is readily available. Second, with this candidate order we
know that any candidate itemset for a particular length will have to be inserted
after any already present code table element with the same length. Together,
this means that we can insert a candidate itemset at the right position in the
code table in O(1) if we store the code table elements in an array (over itemset
length) of lists.

20

2.3. Algorithms

Database

Many many patterns

KRimp select pattern
accept / add to
reject code table
MDL

= g

compress database

Figure 2.1: KRIMP in action.

The Krimp Algorithm

g

Code table

We now have the ingredients for the basic version of our compression algorithm:

KRIMP pattern selection process is illustrated in Figure 2.1.

— Start with the standard code table ST

— Add the candidate itemsets from F one by one.
itemset that is maximal w.r.t. the standard candidate order. Cover the
database using the standard cover algorithm. If the resulting encoding
provides a smaller compressed size, keep it. Otherwise, discard it perma-

nently.

Each time, take the

This basic scheme is formalised as the KRIMP algorithm given as Algo-
rithm 3. For the choice of the name: ‘krimp’ is Dutch for ‘to shrink’. The

Algorithm 3 Krimp

KriMP(D, F) :

CT «— CT,
end if
end for
return CT

. CT «— STANDARDCODETABLE(D)

. F, < F in Standard Candidate Order

. for all F € 7,\Z do

CT. — (CTUF) in Standard Cover Order
if L(D,CT.) < L(D,CT) then

21

2. KRIMP — MINING ITEMSETS THAT COMPRESS

KRiMP takes as input a database D and a candidate set F. The result
is the best code table the algorithm has seen, w.r.t. the Minimal Coding Set
Problem.

Now, it may seem that each iteration of KRIMP can only lessen the usage of
an itemset in CT'. For, if F{ N F, #) and F} is used before F; by the standard
cover function, the usage of F} will go down (provided the support of Fy does
not equal zero). While this is true, it is not the whole story. Because, what
happens if we now add an itemset F3, which is used before F5 such that:

Flﬂng(D and FQﬂFP,?é(D

The usage of F5 will go down, while the usage of F; will go up again; by the
same amount, actually. So, taking this into consideration, even code table
elements with zero usage cannot be removed without consequence. However,
since they are not used in the actual encoding, they are not taken into account
while calculating the total compressed size for the current solution.

In the end, itemsets with zero usage can be safely removed though. After
all, they do not code, so they are not part of the optimal answer that should
consist of the smallest coding set. Since the singletons are required in a code
table by definition, these remain.

Pruning

That said, we can’t be sure that leaving itemsets with a very low usage count
in C'T is the best way to go. As these have a very small probability, their
respective codes will be very long. Such long codes may make better code tables
unreachable for the greedy algorithm; it may get stuck in a local optimum. As
an example, consider the following three code tables:

CTr = {{X1, X} {X1} {Xo} {X5}}
CTy = {{leX27X3}7{X1’X2}7{X1}7{X2}7{X3}}
CTy = {{X1,Xo, X5}, {X1},{ X2}, {X5}}

Assume that suppp({X1, X2, X3}) = suppp({X1,X2}) — 1. Under these
assumptions, standard KrRiMP will never consider CT3, but it is very well pos-
sible that L(D,CTs) < L(D,CTy) and that CT3 provides access to a branch of
the search space that is otherwise left unvisited. To allow for searching in this
direction, we can prune the code table that KRIMP is considering.

There are many possibilities to this end. The most obvious strategy is
to check the attained compression of all valid subsets of CT including the
candidate itemset F', ie. { CT, € CT | F € CT, N I C CT, }, and

22

2.3. Algorithms

choose CT,, with minimal L(D, CT,). In other words, prune when a candidate
itemset is added to C'T', but before the acceptance decision. Clearly, such a
pre-acceptance pruning approach implies a huge amount of extra computation.
Since we are after a fast and well-performing heuristic we do not consider this
strategy.

A more efficient alternative is post-acceptance pruning. That is, we only
prune when F is accepted: when candidate code table C'T, = CT U F is better
than CT, ie. L(D,CT.) < L(D,CT), we consider its valid subsets. This
effectively reduces the pruning search space, as only few candidate itemsets
will be accepted.

To cut the pruning search space further, we do not consider all valid subsets
of CT, but iteratively consider itemsets X € CT of which usagep(X) has
decreased for removal. The rationale is that for these itemsets we know that
their code lengths have increased; therefore, it is possible that these sets now
harm the compression.

In line with the standard order philosophy, we first consider the itemset with
the smallest usage and thus the longest code. If by pruning an itemset the total
encoded size decreases, we permanently remove it from the code table. Further,
we then update the list of prune candidates with those item sets whose usage
consequently decreased. This post-acceptance pruning strategy is formalised
in Algorithm 4. We refer to the version of KRIMP that employs this pruning
strategy (which would be on line 6 of Algorithm 3) as KRIMP with pruning. In
Section 2.7 we will show that employing pruning improves the performance of
KRIMP.

Algorithm 4 Code Table Post-Acceptance Pruning
CODETABLEPOSTACCEPTANCEPRUNING(CT,, CT) :
1. PruneSet — { X € CT | usagecr,(X) < usagecr(X) }
2. while PruneSet # () do
3. PruneCand «— X € PruneSet with lowest usagecr, (X)

4. PruneSet < PruneSet \ PruneCand

5. CT,— CI.\ PruneCand

6. if L(D,CT,) < L(D,CT.) then

7. PruneSet «— PruneSetU{ X € CT), | usagecr,(X) < usagecr.(X) }
8. CT. — CT,

9. end if

10. end while
11. return CT,

23

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Complexity

Here we analyse the complexity of the KRIMP algorithms step—by—step. We
start with time-complexity, after which we cover memory-complexity.

Given a set of (frequent) itemsets F, we first order this set, requiring
O(|F|log|F|) time. Then, every element F € F is considered once. Using
a hash-table implementation we need only O(1) to insert an element at the
right position in C'T', keeping C'T" ordered. To calculate the total encoded size
L(D,CT), the cover function is applied to each ¢t € D. For this, the standard
cover function considers each X € CT once for a t. Checking whether X is
an (uncovered) subset of ¢ takes at most O(]Z]). Therefore, covering the full
database takes O(|D| x |CT| x |Z|) time. Then, optimal code lengths and the
total compressed size can be computed in O(|CT).

We know the code table will grow to at most |F| elements. So, given a set of
(frequent) itemsets F and a cover function that considers the elements of the
code table in a static order, the worst-case time-complexity of the KrRIMP al-
gorithm without pruning is

O(| Fllog |F| + |F| x (ID] x | F| x |Z] + |F]))-

When we do employ pruning, in the worst-case we have to reconsider each
element in CT after accepting each F' € F,

O(|Fllog ||+ |F* x (ID| x |F| x [Z] + | F])).

This looks quite horrendous. However, it is not as bad as it seems.

First of all, due to MDL, the number of elements in the code table is very
small, |CT| < |D| < |F], in particular when pruning is enabled. In fact, this
number (typically 100 to 1000) can be regarded as a constant, removing it from
the big-O notation. Therefore,

O(|F[log | F| + [D| x [F| x 7])

is a better estimate for the time-complexity for KRIMP with or without pruning
enabled.

Next, for Z of reasonable size (say, up to 1000), bitmaps can be used to
represent the itemsets. This allows for subset checking in O(1), again removing
a term from the complexity. Further, for any new candidate code table itemset
F € F, the database needs only to be covered partially; so instead of all |D|
transactions only those d transactions in which F' occurs need to be covered. If
D is large and the minsup threshold is low, d is generally very small (d < |D|)
and can be regarded as a constant. So, in the end we have

O(| F|log |F| + ||).

24

2.4. Interlude

Now, we consider the order of the memory requirements of KRiMpP. The worst-
case memory requirements of the KRIMP algorithms are

OC|FI+ DI+ |F])-

Again, as the code table is dwarfed by the size of the database, it can be
regarded a (small) constant. The major part is the storage of the candidate
code table elements. Sorting these can be done in place. As it is iterated in
order, it can be handled from the hard drive without much performance loss.
Preferably, the database is kept resident, as it is covered many many times.

2.4 Interlude

Before we continue with more theory, we will first present some results on a
small number of datasets to provide the reader with some measure and intuition
on the performance of KrRIMP. To this end, we ran KRIMP with post-acceptance
pruning on six datasets, using all frequent itemsets mined at minsup = 1 as can-
didates. The results of these experiments are shown in Table 2.2. Per dataset,
we show the number of transactions and the number of candidate itemsets.
From these latter figures, the problem of the pattern explosion becomes clear:
up to 5.5 billion itemsets can be mined from the Mushroom database, which
consists of only 8124 transactions. It also shows that KRIMP successfully bat-
tles this explosion, by selecting only hundreds of itemsets from millions up to
billions. For example, from the 5.5 billion for Mushroom, only 442 itemsets are
chosen; a reduction of 7 orders of magnitude.

For the other datasets, we observe the same trend. In each case, fewer than
2000 itemsets are selected, and reductions of many orders of magnitude are at-
tained. The number of selected itemsets depends mainly on the characteristics
of the data. These itemsets, or the code tables they form, compress the data
to a fraction of its original size. This indicates that very characteristic itemsets
are chosen, and that the selections are non-redundant.

Further, the timings for these experiments show that the compression-based
selection process, although computationally complex, is a viable approach in
practice. The selection of the above mentioned 442 itemsets from 5.5 billion
itemsets takes under 4 hours. For the Adult database, KRIMP considers over
400.000 itemsets per second, and is limited not by the CPUs but by the rate
with which the itemsets can be read from the hard disk.

Given this small sample of results, we now know that indeed few, charac-
teristic and non-redundant itemsets are selected by KrRIMP, in number many
orders smaller than the complete frequent itemset collections. However, this
leaves the question of how good are the returned pattern sets?

25

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Table 2.2: Results of running KRIMP on a few datasets.

Krivp
Dataset D| IFIleT\T| EFSR% time
Adult 48842 58461763 1303 244 2m25
Chess (kr-k) 28056 373421 1684 61.6 13s
Led7 3200 15250 152 28.6 0.05s
Letter recognition 20000 580968767 1780 35.7 52m33
Mushroom 8124 5574930437 442 20.6 3h40
Pen digits 10992 459191636 1247 42.3 31m33

For all datasets the candidate set F was mined with minsup = 1, and
KRIMP with post-acceptance pruning was used. For KRIMP, the size of
the resulting code table (minus the singletons), the compression ratio
and the runtime is given. The compression ratio is the encoded size of
the database with the obtained code table divided by the encoded size
with the standard code table. Timings recorded on quad-core 3.0 Ghz
Xeon machines.

2.5 Classification by Compression

In this section, we describe a method to verify the quality of the KRIMP se-
lection in an independent way. To be more precise, we introduce a simple
classification scheme based on code tables. We answer the quality question
by answering the question: how well do KRIMP code tables classify? For this,
classification performance is compared to that of state-of-the-art classifiers in
Section 2.7.

Classification through MDL

If we assume that our database of transactions is an independent and identically
distributed (i.i.d.) sample from some underlying data distribution, we expect
the optimal code table for this database to compress an arbitrary transaction
sampled from this distribution well. We make this intuition more formal in
Lemma 4.

We say that the itemsets in CT are independent if any co-occurrence of
two itemsets X,Y € CT in the cover of a transaction is independent. That is,
P(XY)= P(X)P(Y). Clearly, this is a Naive Bayes [117] like assumption.

26

2.5. Classification by Compression

Lemma 4. Let D be a bag of transactions over I, cover a cover function, CT
the optimal code table for D and t an arbitrary transaction over Z. Then, if
the itemsets X € cover(CT,t) are independent,

L(t| CT) = —log (P(t | D)).

Proof.

L(t|CT) = > L{codecr(X))

X €ecover(CT,t)

= Y. —log(P(X|D)

X ecover(CT,t)

= —log Il PxID)
X €cover(CT.,t)

— —log(P(t| D).
O

The last equation is only valid under the Naive Bayes like assumption,
which might be violated. However, if there are itemsets X,Y € CT such
that P(XY) > P(X)P(Y), we would expect an itemset Z € CT such that
X,Y C Z. Therefore, we do not expect this assumption to be overly optimistic.

Now, assume that we have two databases generated from two different un-
derlying distributions, with corresponding optimal code tables. For a new
transaction that is generated under one of the two distributions, we can now
decide to which distribution it most likely belongs. That is, under the Naive
Bayes assumption, we have the following lemma.

Lemma 5. Let Dy and Ds be two bags of transactions over I, sampled from two
different distributions, cover a cover function, and t an arbitrary transaction
over Z. Let C'Ty and CTy be the optimal code tables for resp. D1 and Ds.
Then, from Lemma 4 it follows that

L(t | CTl) > L(t | CTQ) = P(t | Dl) < P(t | Dg).

Hence, the Bayes optimal choice is to assign ¢ to the distribution that leads
to the shortest code length.

The Krimp Classifier

The previous subsection, with Lemma 5 in particular, suggests a straight-
forward classification algorithm based on KRIMP code tables. This provides

27

2. KRIMP — MINING ITEMSETS THAT COMPRESS
Database

§ -ﬁ []
(n classes)
- Encode
Split Apply Code table unseen Shortest
per class KRiMP per class transactions code wins!

—_— |

Figure 2.2: The KriMpP Classifier in action.

an independent way to assess the quality of the resulting code tables. The
Krimp Classifier is given in Algorithm 5. The KRIMP classification process is
illustrated in Figure 2.2.

The classifier consists of a code table per class. To build it, a database with
class labels is needed. This database is split according to class, after which
the class labels are removed from all transactions. KRIMP is applied to each
of the single-class databases, resulting in a code table per class. At the very
end, after all pruning has been done, each code table is Laplace corrected: the
usage of each itemset in C'T}, is increased by one.

This ensures that all itemsets in CT}, have non-zero usage, therefore have

Algorithm 5 Krimp Classifier

KRIMPCLASSIFIER(D, t) :
. K «— { class labels of D }
. {Dy} < split D on K, remove each k € K from each t € D
. for all D, do

Fi < MineCandidates(Dy,)

CTy — KRIMP(Dy, Fi)

for each X € CT}, : usagecr, (X) «— usagecr, (X) +1
end for
return arg mingex L(t | CTy)

I e N

28

2.6. Related Work

a code, i.e. their code length can be calculated, and thus, that any arbitrary
transaction t C Z can be encoded. (Recall that we require a code table to
always contain all singleton itemsets.)

When the compressors have been constructed, classifying a transaction is
trivial. Simply assign the class label belonging to the code table that provides
the minimal encoded length for the transaction.

2.6 Related Work

MDL in Data Mining

MDL was introduced by Rissanen [97] as a noise-robust model selection tech-
nique. In the limit, refined MDL is asymptotically the same as the Bayes
Information Criterion (BIC), but the two may differ (strongly) on finite data
samples [49]. We are not the first to use MDL, nor are we the first to use MDL
in data mining or machine learning. Many, if not all, data mining problems
can be related to Kolmogorov Complexity, which means they can be practically
solved through compression [40], e.g. clustering (unsupervised learning), clas-
sification (supervised learning), and distance measurement. Other examples
include feature selection [93], defining a parameter-free distance measure on
sequential data [57,58], discovering communities in matrices [26], and evolving
graphs [105].

Pattern Selection

Most, if not all pattern mining approaches suffer from the pattern explosion.
As discussed before, its cause lies primarily in the large redundancy in the
returned pattern sets. This has long since been recognised as a problem and
has received ample attention.

To address this problem, closed [91] and non-derivable [24] itemsets have
been proposed, which both provide a concise lossless representation of the orig-
inal itemsets. However, these methods deteriorate even under small amounts of
noise. Similar, but providing a partial (i.e. lossy) representation, are maximal
itemsets [14] and J-free sets [35]. Along these lines, Yan et al. [121] proposed
a method that selects k representative patterns that together summarize the
frequent pattern set.

Recently, the approach of finding small subsets of informative patterns that
describe the database has attracted a significant amount of research [21,60,85].
First, there are the methods that provide a lossy description of the data. These
strive to describe just part of the data, and as such may overlook impor-
tant interactions. Summarization as proposed by Chandola & Kumar [27]

29

2. KRIMP — MINING ITEMSETS THAT COMPRESS

is a compression-based approach that identifies a group of itemsets such that
each transaction is summarized by one itemset with as little loss of information
as possible. Wang & Karypis [115] find summary sets, sets of itemsets that
contain the largest frequent itemset covering each transaction.

Pattern Teams [61] are groups of most-informative length-k itemsets [60].
These are exhaustively selected through an external criterion, e.g. joint en-
tropy or classification accuracy. As this approach is computationally intensive,
the number of team members is typically < 10. Bringmann & Zimmerman [21]
proposed a similar selection method that can consider larger pattern sets. How-
ever, it also requires the user to choose a quality measure to which the pattern
set has to be optimized, unlike our parameter-free and lossless method.

Second, in the category of lossless data description, we recently [101] intro-
duced the MDL-based KRrRiMP algorithm. In this chapter we extend the theory,
tune the pruning techniques and thoroughly verify the validity of the chosen
heuristics, as well as provide extensive experimental evaluation of the quality
of the returned code tables.

Tiling [42] is closely related to our approach. A tiling is a cover of the
database by a group of (overlapping) item sets. Itemsets with maximal uncov-
ered area are selected, i.e. as few as possible itemsets cover the data. Unlike
our approach, model complexity is not explicitly taken into account. Another
major difference in the outcome is that KRIMP selects more specific (longer)
itemsets. Xiang et al. [120] proposed a slight reformulation of Tiling that allows
tiles to also cover transactions in which not all its items are present.

Two approaches inspired by KrRIMP are Pack [106] and LESS [53]. Both
approaches consider the data 0/1 symmetric, unlike here, where we only regard
items that are present (1s). LESS employs a generalised KRIMP encoding
to select only tens of low-entropy sets [52] as lossless data descriptions, but
attains worse compression ratios than KrRIMP. Pack does provide a significant
improvement in that regard. It employs decision trees to succinctly transmit
individual attributes, and these models can be built from data or candidate
sets. Typically, Pack selects many more itemsets than KRIMP.

Our approach seems related to the set cover problem [25], as both try to
cover the data with sets. Although NP-complete, fast approximation algo-
rithms exist for set cover. These are not applicable for our setup though, as
in set cover the complexity of the model is not taken into account. Another
difference is that we do not allow overlap between itemsets. As optimal com-
pression is the goal, it makes intuitively sense that overlapping elements may
lead to shorter encodings, but it is not immediately clear how to achieve this
in a fast heuristic.

30

2.7. Experiments

Classification

A lot of classification algorithms have been proposed, many of which fall into
either the class of rule-induction-based or that of association-rule-based meth-
ods. Because we use classification as a quality measure for the patterns that
KRIMP picks, we will compare our results with those obtained by some of the
best existing classifiers. Such comparison can be done with rule-induction-
based methods such as C4.5 [94], FOIL [95] and CPAR [122]. Mehta et al. [82]
use MDL to prune decision trees for classification. However, we are more inter-
ested in the comparison to association-rule-based algorithms like iCAEP [123],
HARMONY [114], CBA [75] and LB [83] as these also employ a collection
of itemsets for classification. Because we argued that our method is strongly
linked to the principle of Naive Bayes (NB) [39] it’s imperative we compare
to it. Finally, we compare to Support Vector Machines (SVMs) [100], since it
is generally accepted these perform well in many cases. Because, opposed to
KRiMmP, these methods were devised with the goal of classification in mind, we
would expect them to (slightly) outperform the KRIMP classifier.

2.7 Experiments

In this section we experimentally evaluate the KrIMP algorithms and the un-
derlying heuristics, and assess the quality of the resulting code tables.

We first describe our setup and the datasets we use in the experiments.
Then, we start our evaluation of KRIMP by looking at how many itemsets
are selected and what compression ratios are attained. The stability of these
results, and whether these rely on specific itemsets is explored. We then test
whether the code tables model relevant structure through swap-randomisation.
The quality of the code tables is independently validated through classification.
At the end of the section, we evaluate the cover and candidate order heuristics
of KRIMP.

Setup

We use the shorthand notation L% to denote the relative total compressed size
of D,
L(D,CT)

L(D, ST) %

wherever D is clear from context. As candidates, F, we typically use all frequent
itemsets mined at minsup = 1, unless indicated otherwise. We use the AFOPT
miner [76], taken from the FIMI repository [45], to mine (closed) frequent
itemsets. The reported KRIMP timings are of the selection process only and

31

2. KRIMP — MINING ITEMSETS THAT COMPRESS

do not include the mining and sorting of the candidate itemset collections.
All experiments were conducted on quad-core Xeon 3.0 GHz systems (in black
casing) running Windows Server 2003. Reported timings are based on four-
threaded runs, again, unless stated otherwise.

Data

For the experimental validation of our methods we use a wide range of freely
available datasets. From the LUCS/KDD data set repository [32] we take some
of the largest databases. We transformed the Connect-4 dataset to a slightly
less dense format by removing all ‘empty-field’ items. From the FIMI repository
[45] we use the BMS* datasets [62]. Further, we use the Mammals presence
and DNA Amplification databases. The former consists of presence records
of European mammals® within geographical areas of 50 x 50 kilometers [86].
The latter is data on DNA copy number amplifications. Such copies activate
oncogenes and are hallmarks of nearly all advanced tumors [89]. Amplified
genes represent attractive targets for therapy, diagnostics and prognostics.

The details for these datasets are depicted in Table 2.3. For each database
we show the number of attributes, the number of transactions and the density:
the percentage of ‘present’ attributes. Last, we provide the total compressed
size in bits as encoded by the singleton-only standard code tables ST

Selection

We first evaluate the question whether KRIMP provides an answer to the pattern
explosion. To this end, we ran KRIMP on 27 datasets, and analysed the outcome
code tables, with and without post-acceptance pruning. The results of these
experiments are shown as Table 2.4. As candidates itemset collections we mined
frequent itemsets of the indicated minsup thresholds. These were chosen as low
as possible, either storage-wise or computationally feasible.

The main result shown in the table is the reduction attained by the selection
process: up to 7 orders of magnitude. While the candidate sets contain millions
up to billions of itemsets, the resulting code tables typically contain hundreds to
thousands of non-singleton itemsets. These selected itemsets compress the data
well, typically requiring only a quarter to half of the bits of the independent ST
encoding. Dense datasets are compressed very well. For Adult and Mushroom,
ratios of resp. 24% and 21% are noted. Sparse data, on the other hand,
typically contains little structure. We see that such datasets (e.g. the Retail

4 We wish to thank Blue Martini Software for contributing the KDD Cup 2000 data.
5 The full version of the mammal dataset is available for research purposes upon request
from the Societas Europaeca Mammalogica. http://www.european-mammals.org

32

2.7. Experiments

Table 2.3: Statistics of the datasets used in the experiments.

Dataset |D| |Z| density # classes L(D|ST)
Accidents 340183 468 7.22 - 74592568
Adult 48842 97 15.33 2 3569724
Anneal 898 71 20.15 5 62827
BMS-pos 515597 1657 0.39 - 25321966
BMS-webview 1 59602 497 0.51 - 1173962
BMS-webview 2 77512 3340 0.14 - 3747293
Breast 699 16 62.36 2 27112
Chess (k-k) 3196 (0] 49.33 2 687120
Chess (kr—k) 28056 58 12.07 18 1083046
Connect—4 67557 129 33.33 3 17774814
DNA amplification 4590 392 1.47 - 212640
Heart 303 50 27.96 5 20543
Tonosphere 351 157 22.29 2 81630
Iris 150 19 26.32 3 3058
Led7 3200 24 33.33 10 107091
Letter recognition 20000 102 16.67 26 1980244
Mammals 2183 121 20.5 - 320094
Mushroom 8124 119 19.33 2 1111287
Nursery 12960 32 28.13 5 569042
Page blocks 5473 44 25 5 216552
Pen digits 10992 86 19.77 10 1140795
Pima 768 38 23.68 2 26250
Pumsbstar 49046 2088 2.42 - 19209514
Retail 88162 16470 0.06 - 10237244
Tic-tac-toe 958 29 34.48 2 45977
Waveform 5000 101 21.78 3 656084
Wine 178 68 20.59 3 14101

Per dataset the number of transactions, the number of attributes, the
density (percentage of 1’s) and the number of bits required by KRIMP to
compress the data using the singleton-only standard code table ST

33

2. KRIMP — MINING ITEMSETS THAT COMPRESS

and BMS datasets) indeed prove difficult to compress; relatively many itemsets
are required to provide a meagre compression.

Comparing between KRIMP with and without post-acceptance pruning, we
see that enabling pruning provides the best: fewer itemsets (~ 1000, on aver-
age) are returned, which provide better compression (avg. 2% improvement).
For Accidents and BMS-pos the difference in the number of selected itemsets is
a factor of 10. The average length of the itemsets in the code tables is about the
same, with resp. 5.9 and 5.7 with and without pruning. However, the average
usage of these itemsets differs more, with averages of resp. 80.7 and 48.2.

As post-acceptance pruning provides improved performance, from now on-
ward we employ KRIMP with post-acceptance pruning, unless indicated oth-
erwise. Further, due to the differences in code table size, experiments with
pruning typically execute faster than those without pruning.

Next, we examine the development in number of selected itemsets w.r.t. the
number of candidate itemsets. For the Mushroom database, the top graph of
Figure 2.3 shows the size of the candidate set and size of the corresponding code
table for varying minsup thresholds. While we see that the number of candidate
itemsets grows exponentially, to 5.5 billion for minsup = 1, the number of
selected itemsets stabilises at around 400. This stabilisation is typical for all
datasets, with the actual number being dependent on the characteristics of the
data.

This raises the question whether the total compressed size also stabilises.
In the bottom graph of Figure 2.3, we plot the total compressed size of the
database for the same range of minsup. From the graph it is clear that this is
not the case: the compressed size decreases continuously, it does not stabilise.
Again, this is typical behaviour; especially for sparse data we have recorded
steep descents at low minsup values. As the number of itemsets in the code
table is stable, we thus know that itemsets are being replaced by better ones.
Further, note that the compressed size of the code table is dwarfed by the
compressed size of the database. This is especially the case for large datasets.

Back to the top graph of the figure, we see a linear correlation between
the runtime and the number of candidate sets. The correlation factor depends
heavily on the data characteristics; its density, the number of items and the
number of transactions. For this experiment, we observed 200,000 to 400,000
candidates considered per second, the performance being limited by IO.

In the top graph of Figure 2.4 we provide an overview of the differences
in the sizes of the candidate sets and code tables, and in the bottom graph
the runtimes recorded for these experiments. Those experiments for which the
runtime bars are missing finished within one second. The bottom graph shows
that the runtimes are low. Letting KRIMP consider the largest candidate sets,
billions of itemsets, takes up to a couple of hours. The actual speed (candi-

34

2.7. Experiments

dates per second) mainly depends on the support of the itemsets (the number
of transactions that have to be covered). The speed at which our current imple-
mentation considers candidate itemsets typically ramps up to thousands, even
hundreds of thousands, per second.

Stability

Here, we verify the stability of KrRIMP w.r.t. different candidate sets. First we
investigate whether good results can be attained without the itemsets normally
chosen in the code table. Given the large redundancy in the frequent pattern
set, one would expect so.

To this end, we first ran KRIMP using candidate set F to obtain C'T". Then,
for each X € CS\ 7 we ran KRIMP using the candidate set F \ {X}. In
addition, we also ran KRIMP using F \ {X € CS\ Z}.

As a code table typically consists of about 100 to 1000 elements, a con-
siderable set of experiments is required per database. Therefore, we use five
of the datasets. The results of these experiments are presented in Table 2.5.
The minute differences in compression ratios show that the performance of
KRIMP does not rely on just those specific itemsets in the original code tables.
Excluding all elements from the original code table results in compression ra-
tios up till only .5% worse than normal. This is expected, as in this setting all
structure in the data captured by the original code table has to be described
differently. The results of the individual itemset exclusion experiments, on the
other hand, are virtually equal to the original. In fact, sometimes shorter (bet-
ter) descriptions are found this way: the removed itemsets were in the way of
ones that offer a better description.

Next, we consider excluding far more itemsets as candidates. That is, we
use closed, as opposed to all, frequent itemsets as candidates for Krimp. For
datasets with little noise the closed frequent pattern set can be much smaller
and faster to mine and process. For the minsup thresholds depicted in Ta-
ble 2.4, we mined both the complete and closed frequent itemset collections,
and used these as candidate sets F for running KRIMP. Due to crashes of the
closed frequent itemset miner, we have no results for the Chess (k-k) dataset.
Figure 2.5 shows the comparison between the results of either candidate set
in terms of the relative compression ratio. The differences in performance are
slight, with an average increase in L% of about 1%. The only exception seems
ITonosphere, where a 12% difference is noted. Further, the resulting code tables
are of approximately the same size; the ‘closed’ code tables consist of fewer
itemsets: 10 on average. From these experiments we can conclude that closed
frequent itemsets are a good alternative to be used as input for KRIMP, espe-
cially if otherwise too many frequent itemsets are mined.

35

2. KRIMP — MINING ITEMSETS THAT COMPRESS

’ J_'_'_’_KJJ/J
10°
i 4'_'_—_’_¢—’_”
10" &
= £
2 [
E 10 b
2 F J_'_
3
2100 b
5 E
5 E
g £
5 T f
z 10 E 7
1 C !
S L =
i F ---'
3 "-'
10’ T
E e
£ e o s o e N : -
———T aa
. - ymmmem
’,-—/' ------- H
,d" omemem!
10' pommm=e
p—
1
7
, - = |F| === |CT\I| == time(s)
10
o \\
z s
5 0
@
N
el
54
35
2 =’
g_ —-___-__‘___-.--'__‘_____.._---""~.--.----
S 1o S
£ PRl
L -
[o~
[',t"-’
Le
= L(CT,DB) ==== L(DB|CT) == L(CT)

Figure 2.3: Running KRIMP with post-acceptance pruning on the Mushroom
dataset using 5.5 billion frequent itemsets as candidates (minsup = 1). (top)
Per minsup, the size of the candidate set, | F|, the size of the code table, |CT\Z|,
and the runtime in seconds. (bottom) Per minsup, the size in bits of the code

L(D,CT)).

36

table, the data, and the total compressed size (resp. L(CT), L(D | CT) and

2.7. Experiments

1E+09

100.000.000 NN [NN S E—

10.000.000 SEEEEE &I I - . =

1000000 — - . B B =B N a8 EBEE B B8 S
Yy B H H H I I E E B B N B D N S EaS DR .
s I §E §E E 5§ B 5 B B N D s E B B EEEEEE NN |
1000 —p— —— S I EpEaS. R E 7I ——————— I ————— —

Number of itemsets

100 |— — =

100 —f —

1000 — ——ro o —

Time in seconds
3 -

[

|

|
F

|

|

‘

|
F
[

|
EEm
E
L

|
.

|
i
[

||

‘ ‘

10.000 —

100.000 [l mlcTl M time

Figure 2.4: The results of KRIMP with post-acceptance pruning on the 27
datasets using the minsup thresholds of Table 2.4. The dark coloured bars
show the number of itemsets in the candidate set, |F|, the lighter coloured
bars the number of non-singleton itemsets selected in the code table, |CT \ Z|,
and the bottom graph the associated runtimes.

Relevance

To evaluate whether KRIMP code tables model relevant structure, we employ
swap randomisation [44]. Swap randomisation is the process of randomising
data to obscure the internal dependencies, while preserving the row and column
margins of the data. The idea is that if the true structure of the data is
captured, there should be significant differences between the models found in
the original and randomised datasets.

To this end, we compare the total compressed size of the actual data to those
of 1000 swap randomised versions of the data. As this implies a large number
of experiments, we have to restrict ourselves to a small selection of datasets. To
this end, we chose three datasets with very different characteristics: BMS-wv1,
Nursery and Wine. To get reasonable numbers of candidate itemsets (i.e. a
few million) from the randomised data we use minsup thresholds of 1 for the
latter two datasets and 35 for BMS-wvl. We apply as many swaps as there are
1’s in the data.

Figure 2.6 shows the histogram of the total compressed sizes of these 1000

37

2. KRIMP — MINING ITEMSETS THAT COMPRESS

100

920

80

70

60

50

40

Relative compression (L%)

30

20

2
q,
s
%
=
?

all W closed

Figure 2.5: The results of KRIMP with post-acceptance pruning on 26 datasets
using the minsup thresholds of Table 2.4. Per dataset, the upward bars indi-
cated the relative total compressed size (L%). As candidates, F, all (left bars),
and closed (right bars) frequent itemsets were used.

randomisations. The total compressed sizes of the original databases are in-
dicated by arrows. The standard encoded sizes for these three databases,
L(D,ST), are 1173962 bits, 569042 bits and 14100 bits, respectively. The
graphs show that the original data can be compressed significantly better than
the randomised datasets (p-value of 0). Further quantitative results are shown
in Table 2.6. Besides much better compression, we see that for Nursery and
Wine the code tables induced on the original data contain fewer, but more
specific (i.e. longer) itemsets. For BMS-wvl the randomised data is virtually
incompressible with KRIMP (L% ~ 98%), and as such much fewer itemsets are
selected.

Classification

As an independent evaluation of the quality of the itemsets picked by KRIMP,
we compare the performance of the KRIMP classifier to the performance of a
wide range of well-known classifiers. Our hypothesis is that, if the code table-
based classifier performs on-par, KRIMP selects itemsets that are characteristic
for the data.

38

2.7. Experiments

120

100

80

60

40

Number of randomsied datasets

20

120

100

80

60

Number of randomsied datasets

40

20

120

100

80

60

Number of randomsied datasets

40

Original
data
1
l Il Il
1.018 1.02 1.144 1.146 1.148 115
Total compressed size (bits) x10°
Original
data
1
i\ I
259 26 439 44 441 442
Total compressed size (bits) x10°
Original
data

v

11

1.1

Total compressed size (bits) x10*

Figure 2.6: Histograms of the total compressed sizes of 1000 swap randomised
BMS-wvl (top), Nursery (middle) and Wine (bottom) datasets, using all fre-
quent itemsets as candidates for KRIMP with post-acceptance pruning. Total
compressed sizes of the original datasets are indicated by the arrows. Note the
jumps in compressed size on the x-axes.

39

2. KRIMP — MINING ITEMSETS THAT COMPRESS

We use the same minsup thresholds as we used for the compression experi-
ments, listed in Table 2.4. Although the databases are now split on class before
they are compressed by KRIMP, these thresholds still provide large numbers of
candidate itemsets and result in code tables that compress well.

It is not always beneficial to use the code tables obtained for the lowest
minsup, as class sizes are often unbalanced or more structure is present in
one class than in another. Also, overfitting may occur for very low values of
minsup. Therefore, we store code tables at fixed support intervals during the
pattern selection process. During classification, we need to select one code
table for each class. To this end, we ‘pair’ the code tables using two methods:
absolute and relative. In absolute pairing, code tables that have been generated
at the same support levels are matched. Relative pairing matches code tables
of the same relative support between 100% and 1% of the maximum support
value (per class, equals the number of transactions in a class). We evaluate all
pairings and choose that one that maximises accuracy.

All results reported in this section have been obtained using 10-fold cross-
validation. As performance measure we use accuracy, the percentage of true
positives on the test data. We compare to results obtained with 6 state-of-the-
art classifiers. These scores are taken from [19,114,123], which all used the
same discretised datasets. Missing scores for C4.5, Naive Bayes and SVM have
been acquired using Weka [119]. Note that, in contrast to others, we use the
sparser version of Connect—/, described before.

Before we compare the KRIMP classification performance to other methods,
we verify whether there is a qualitative difference between using all or only
closed frequent itemsets as candidates and using post-acceptance pruning or
not. Table 2.7 shows that the variation in average accuracy is very small,
but using all frequent itemsets as candidates with pruning gives the highest
accuracy, making it an obvious choice for inspection of more detailed results in
the rest of this subsection.

Classification results with all frequent itemsets as candidates and post-
acceptance pruning are presented in Table 2.8, together with accuracies ob-
tained with 6 competitive classifiers. Baseline accuracy is the (relative) size of
the largest class in a dataset. For about half of the datasets, absolute pairing
gives the maximum score, relative pairing gives the best results for the other
cases. As expected, relative pairing performs well especially for datasets with
small classes or unbalanced class sizes. In general though, the difference in
maximum accuracy between the two types of pairings is very small, i.e. < 1%.
For a few datasets, the difference is more notable, 2 — 10%.

Looking at the scores, we observe that performance on most datasets is very
similar for most algorithms. For Pima, for example, all accuracies are within
a very small range. Because of this, it is important to note that performance

40

2.7. Experiments

may vary up to a few percent depending on the (random) partitioning used
for cross-validation, especially for datasets having smaller classes. Since we
took the accuracies from different sources, we cannot conclude that a particular
classifier is better on a certain dataset if the difference is not larger than 2 —3%.

The KRIMP classifier scores 6 wins, indicated in boldface, which is only
beaten by C4.5 with 7 wins. Additionally, the achieved accuracy is close to the
winning score in 5 cases, not so good for Connect—4, Heart and Tic—tac—toe,
and average for the remaining 5 datasets.

Compared to Naive Bayes, to which our method is closely related, we ob-
serve that the obtained scores are indeed quite similar. On average, however,
KRIMP achieves 2.4% higher accuracy, with 84.5% for Krimp and 82.1% for
Naive Bayes. The average accuracy for SVM is 83.8%, while C4.5 outper-
forms all with 86.3%. We also looked at the performance of FOIL, PRM and
CPAR [95,122] reported by Coenen [33]. These classifiers perform sub-par in
comparison to those in Table 2.8. A comparison to LB and/or LB-chi2 [83]
is problematic, as only few accuracies are available for the (large) datasets we
use and for those that are available, the majority of the LB results is based on
train/test, not 10-fold cross-validated.

To get more insight in the classification results, confusion matrices for 3
datasets are given in Table 2.9. The confusion matrix for Heart shows us why
the KRIMP classifier is unable to perform well on this dataset: it contains 4 very
small classes. For such small databases, the size of the code table is dominant,
precluding the discovery of the important frequent itemsets. This is obviously
the case for some Heart classes. If we consider Mushroom and Iris, then the
bigger the classes, the better the results. In other words, if the classes are big
enough, the KRIMP classifier performs very well.

We can zoom in even further to show how the classification principle works
in practice. Take a look at the effect of coding a transaction with the ‘wrong’
code table, which is illustrated in Figure 2.7. The rounded boxes in this figure
visualise the itemsets that make up the cover of the transaction. Each of the
itemsets is linked to its code by the dashed line. The widths of the black and
white encodings represent the actual computed code lengths. From this figure,
it is clear that code tables can be used to both characterise and recognise data
distributions.

Order

Next, we investigate the order heuristics of the KRIMP algorithm. Both the
standard cover order and standard candidate order are rationally made choices,
but choices nevertheless. Here, we consider a number of alternatives for both
and evaluate the quality of possible combinations through compression ratios

41

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Transaction 1 Transaction 2

ETEDEDDTDO@D@ D ETDTDOOD

cT,

T,

EHETDOOEOOEOD DOODODBBDDBB®

Figure 2.7: Wine; two transactions from class 1, D1, encoded by the code tables
for class 1, CTy (top), and class 2, CTy (bottom).

and classification accuracies. The outcome of these experiments are shown in
Table 2.10. Before we cover these results, we discuss the orders. As before, |
indicates the property to be sorted descending, and T ascending.

For the Standard Cover Algorithm, we experimented with the following
orders of the coding set.

— Standard Cover Order:

|X|| suppp(X)] lexicographically 1

— Entry:
index of X in F |

— Area ascending;:

| X| x suppp(X) T index of X in F |

We also consider the Random cover order, where new itemsets are entered
at a random position in the code table. For all the above orders, we sort the
singleton itemsets below itemsets of longer length. In Table 2.10 we refer to
these orders, respectively, as Standard, Entry, Area and Random. We further
experimented with a number of alternatives of the above, but the measured
performance did not warrant their inclusion in the overall comparison.

As for the lineup in which the itemsets are considered by the KRIMP algo-
rithm, the candidate order, we experimented with the following options.

42

2.7. Experiments

— Standard Candidate Order:

suppp(X) | |X]|| lexicographically 7

— Standard, but length ascending;:

suppp(X) | |X|7 lexicographically 1

Length ascending, support descending;:

|X| 1T suppp(X)| lexicographically T

— Area descending, support descending:

| X| x suppp(X) | suppp(X) | lexicographically T

A Random candidate order is also considered, which is simply a random
permutation of the candidate set. In Table 2.10 we refer to these orders as,
respectively, Standard, Standard’, Length, Area and Random. Again, we con-
sidered a number of variants of the above, for none of which the performance
was good enough to be included here.

For all 20 combinations of the above cover and candidate orders we ran
compression experiments on 16 datasets and classification experiments for 11
datasets. As candidate itemsets, we ran experiments with both the complete
and closed frequent itemset collections. Due to the amount of experiments
required by this evaluation we only used single samples for the random orders.
Classification scores are 10-fold cross-validated, as usual. Per dataset, the score
of the best performing pairing (absolute or relative) was chosen. The details
on which datasets and what minsup thresholds were used can be found in
Table 2.11.

The results of these experiments are depicted in Table 2.10. Shown are, per
combination of orders, the total compression ratio L% and the classification
accuracy, both of which are averaged over all databases and both all and closed
frequent itemsets as candidate sets.

Between the orders, we measure considerable differences in compression
ratio, up to 15%. For the candidate orders, the standard cover order is the
best choice. The difference between the two variants Standard and Standard’,
is negligible, while the other options perform significantly worse for cover orders
Standard and Entry. The same can be said for classification. We note that,
although intuitively it seems a good choice, all variants of the area-descending
order we further tested perform equally, but sub-par.

43

2. KRIMP — MINING ITEMSETS THAT COMPRESS

For the standard cover algorithm, order-of-entry performs best, with the
standard cover order second at a slight margin of half a percent. Covering in
order of area shows outright bad performance, loosing even to random. As
order-of-entry shows the best compression ratios, it is preferred from a MDL
point of view. However, the standard order has the practical benefit of being
(much) faster in practice. As it does not always insert new elements at the ‘top’
of the code table, partially covered transactions can be cached, speeding up the
cover process significantly. The differences between the two, both in terms of
compression and classification accuracies, are small, warranting the choice of
the ‘suboptimal’ standard cover order for the practical reasons of having a fast
and well-performing heuristic.

The scores for the random orders show that the greedy covering and MDL-
based selection are most important for attaining good compression ratios. With
either the candidate and/or cover order being random, KRIMP still typically
attains ratios of 50% and average accuracies are far above the baseline of 47.7%.
This is due to the redundancy in the candidate sets and the cover order be-
ing fixed, even when the insertion position for a candidate is random. This
allows the selection process to still pick sets of high-quality itemsets, albeit
sub-optimal.

2.8 Discussion

The experimental evaluation shows that KRIMP provides a practical solution to
the well-known explosion in pattern mining. It reduces the highly redundant
frequent itemset collections with many orders of magnitude to sets of only
hundreds of high-quality itemsets. High compression ratios indicate that these
itemsets are characteristic for the data and non-redundant in-between. Swap
randomisation experiments show that the selections model relevant structure,
and exclusion of itemsets shows that the method is stable with regard to noise.
The quality of the itemsets is independently validated through classification,
for which we introduced theory to classify by code-table based compression.
While the patterns are chosen to compress well, the KRIMP classifier performs
on par with state-of-the-art classifiers.

KRIMP is a heuristic algorithm, as is usual with MDL: the search space
is by far too large to consider fully, especially since it is unstructured. The
empirical evaluation of the choices made in the design of the algorithm show
that the standard candidate order is the best, both from a compression and a
classification perspective. The standard order in which itemsets are considered
for covering a transaction is near-optimal; the order-of-entry approach, where
new itemsets are used maximally, achieves slightly better compression ratios
and classification accuracies. However, the standard order allows for efficient

44

2.8. Discussion

caching, speeding up the cover process considerably while hardly giving in on
quality. Post-acceptance pruning is shown to improve the results: fewer item-
sets are selected, providing better compression ratios and higher classification
accuracies. Although pruning requires itemsets in the code table to be recon-
sidered regularly, its net result is a speed-up as code tables are kept smaller and
the cover process thus needs to consider fewer itemsets to cover a transaction.

The timings reported in this study show that compression is not only a
good, but also a realistic approach, even for large databases and huge candi-
date collections; the single-threaded implementation already considers up to
hundreds of thousands of itemsets per second. While highly efficient frequent
itemset miners were used, we observed that mining the candidates sometimes
takes (much) longer than the actual KRIMP selection. Also, the algorithm can
be easily parallelised, both in terms of covering parts of the database and of
checking the candidate itemsets. The implementation® we used for the ex-
periments in this chapter does the latter, as the performance of the former
deteriorates rapidly for candidate itemsets with low support.

In general, the larger the candidate set, the better the compression ratio.
The total compressed size decreases continuously, even for low minsup values,
i.e. it never converges. Hence, F should be mined at a minsup threshold as low
as possible. Given a suited frequent itemset miner, experiments could be done
iteratively, continuing from the so-far optimal code table and corresponding
minsup. For many datasets, it is computationally feasible to set minsup = 1.

When mining all frequent itemsets for a low minsup is infeasible, using
closed frequent itemsets as candidate set is a good alternative. For most
datasets, results obtained with closed are almost as good as with all frequent
itemsets, while for some datasets this makes the candidate set much smaller
and thus computationally attractive.

KRIMP can be regarded a parameter-free algorithm and used as such in
practice. The candidate set is a parameter, but since larger candidate sets give
better results this can always be set to all frequent itemsets with minsup = 1.
Only when this default candidate set turns out to be too large to handle for the
available implementation and hardware, this needs to be tuned. Additionally,
using post-acceptance pruning always improves the results and even results in
a speed-up in computation time, so there is no reason not to use this.

Although code tables are made to just compress well, it turns out they can
easily be used for classification. Because other classifiers have been designed
with classification in mind, we expected these to outperform the KRIMP classi-
fier. We have shown this is not the case: KRIMP performs on par with the best
classifiers available. We draw two conclusions from this observation. Firstly,

60ur implementation of KRIMP is freely available for research purposes from
http://www.cs.uu.nl/groups/ADA/krimp/

45

2. KRIMP — MINING ITEMSETS THAT COMPRESS

KRIMP selects itemsets that are very characteristic for the data. Secondly, the
compression-based classification scheme works very well.

While this chapter covers a large body of work done, there is still plenty
of future work left to do. For example, KRIMP could be further improved by
directly generating candidate itemsets from the data and its current cover. Or,
all frequent itemsets could be generated on-the-fly from a closed candidate set.
Both extensions would address the problems that occur with extremely large
candidate sets, i.e. crashing itemset miners and IO being the bottleneck instead
of CPU time.

2.9 Conclusions

In this chapter we have shown how MDL gives a dramatic reduction in the
number of frequent itemsets that one needs to consider. For twenty-seven data
sets, the reductions reached by the KRIMP algorithm ranges up to seven orders
of magnitude; only hundreds of itemsets are required to succinctly describe the
data. The algorithm shows a high stability w.r.t. different candidate sets. It
is parameter-free for all practical purposes; for the best result, use as large as
possible candidate sets and enable pruning.

Moreover, by designing a simple classifier we have shown that KRIMP picks
itemsets that matter. This is all the more telling since the selection of code
table elements does not take predictions into account. The small sets that
are selected characterise the database accurately, as is also indicated by small
compressed sizes and swap randomisation experiments.

Also, we verified the heuristic choices we made for the KRIMP algorithm.
We extensively evaluated different possible orders for both the candidate set
and code table. The outcome is that the standard orders are very good: no
combination of orders was found that performs significantly better, while the
standard orders offer good opportunities for optimisation.

Because we set the frequent pattern explosion, the original problem, in a
wide context but discussed only frequent itemsets, the reader might wonder:
does this also work for other types of patterns? The answer is affirmative, in
Bathoorn et al. [13] we have shown that our MDL-based approach also works for
pattern-types such as frequent episodes for sequence data and frequent subgraphs
for graph data. In Koopman et al. [64,65], we extended the approach to multi-
relational databases, i.e. to select patterns over multiple tables. Also, the LESS
algorithm [53] (see also Section 2.6) introduces an extension of the encoding
such that it can be used to select more generic patterns, e.g. low-entropy sets.

Like detailed in Faloutsos & Megalooikonomou [40], there are many data
mining tasks for which compression, and thus the foundations presented in this
chapter, can be used. We will show this in subsequent chapters.

46

2.9. Conclusions

Table 2.4: Results of KRIMP with and without post-acceptance pruning

w/o pruning

with pruning

Dataset minsup |7l |cT\Z| L% |CT\I| L%
Accidents 50000 2881487 4046 55.4 467 55.1
Adult 1 58461763 1914 24.9 1303 244
Anneal 1 4223999 133 37.5 102 35.3
BMS-pos 100 5711447 14628 82.7 1657 81.8
BMS-wvl 32 1531980297 960 86.6 736 86.2
BMS-wv2 10 4440334 5475 84.4 4585 84.0
Breast 1 9919 35 174 30 17.0
Chess (k-k) 319 4603732933 691 30.9 280 27.3
Chess (kr-k) 1 373421 2203 62.9 1684 61.6
Connect—4 1 233142539 4525 11.5 2036 10.9
DNA amp 9 312073710 417 38.6 326 37.9
Heart 1 1922983 108 614 79 577
Tonosphere 35 225577741 235 63.4 164 61.3
Iris 1 543 13 48.2 13 48.2
Led7 1 15250 194 29.5 152 28.6
Letter 1 580968767 3758 43.3 1780 35.7
Mammals 200 93808243 597 50.4 316 484
Mushroom 1 5574930437 689 22.2 442 20.6
Nursery 1 307591 356 45.9 260 45.5
Page blocks 1 63599 56 5.1 53 5.0
Pen digits 1 459191636 2794 48.8 1247 42.3
Pima 1 28845 72 36.3 58 34.8
Pumsbstar 11120 272580786 734 51.0 389 50.9
Retail 4 4106008 7786 98.1 6264 97.7
Tic-tac—toe 1 250985 232 65.0 160 62.8
Waveform 5 465620240 1820 55.6 921 44.7
Wine 1 2276446 76 80.9 63 774

Per dataset, the minsup for mining frequent itemsets, and the size of
the resulting candidate set F. For KRIMP without and with post-
acceptance pruning enabled, the number of non-singleton elements in
the returned code tables and the attained compression ratios.

47

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Table 2.5: Stability of the KRIMP given candidate sets with exclusions

L% given candidates

Dataset minsup F F\X F\CT
Chess (kr-k) 1 616 61.7+0.21 61.6
Mushroom 1 247 24.7+0.01 25.0
Nursery 1 455 454 4+0.36 46.0
Pen digits 50 46.7 46.7+£0.12 47.2
Wine 1 774 77.44+0.26 78.0

Per dataset, the minsup threshold at which frequent itemsets were
mined as candidates F for KRiMP. Further, the relative compression
L% for running KRIMP with F, the average relative compression at-
tained by excluding single original code table elements from JF, and the
relative compression attained by excluding all itemsets normally chosen
from F, i.e. using F\{X € CT | X ¢ 7} as candidates for Krimp. For
Mushroom and Pen digits the closed frequent itemset collections were
used as candidates.

Table 2.6: Swap randomisation experiments

Original data Swap randomised
Dataset |CT\Z| |X| L% |OT \ Z| 1X] L%
BMS-wvl 718 2.8 86.7 2779473 27+£0.0 97.8+0.1
Nursery 260 5.0 455 8492+199 4.0+£0.0 77.5+0.1
Wine 67 38 774 76.8+34 3.1£01 931+04

Results of 1000 independent swap randomisation experiments per
dataset. As many swaps were applied as there are 1’s in the data.
By m we denote the average cardinality of itemsets X € CT \ Z.
The results for the swap randomisations are averaged over the 1000 ex-
periments per dataset. As candidates for KRIMP with post-acceptance
pruning we used all frequent itemsets, minsup = 1, except for BMS-wvl
for which we set minsup = 35.

48

2.9. Conclusions

Table 2.7: Results of KRIMP classification, for all/closed frequent itemsets and
without/with pruning

Candidates w/o pruning with pruning

all 84.3 + 14.2 84.5+13.1
closed 84.0 £13.9 83.7 £ 14.2

For each combination of candidates and pruning, the average accuracy
(%) over the 19 datasets from Table 2.8 is given. Standard deviation
is high as a result of the diverse range of datasets used.

49

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Table 2.8: Results of KRIMP classification, compared to 6 state-of-the-art clas-
sifiers

Dataset base KriMp NB C4.5 CBA HRM iCAEP SVM
Adult 76.1 84.3 838 85.4 752 81.9 80.9 84.1
Anneal 76.2 96.6 970 904 98.1 95.1 974
Breast 65.5 94.1 971 954 953 97.4 69.6
Chess (k-k) 52.2 90.0 879 99.5 98.1 94.6 954
Chess (kr—k) 16.2 57.9 36.1 56.6 44.9 29.8
Connect—4 65.8 69.4 721 81.0 68.1 69.9 725
Heart 54.1 61.7 835 784 81.9 80.3 84.2
Tonosphere 64.1 91.0 89.5 920 92.1 90.6 88.6
Iris 33.3 96.0 93.3 94.7 929 94.7 93.3 96.0
Led7 11.0 75.3 740 715 719 74.6 73.8
Letter 4.1 70.9 64.1 87.9 76.8 67.8
Mushroom 51.8 100 99.7 100 99.9 99.8 99.7
Nursery 33.3 923 903 97.1 888 92.8 84.7 914
Page blocks 89.8 92.6 909 924 89.0 91.6 91.2
Pen digits 10.4 95.0 85.8 96.6 96.2 93.2
Pima 65.1 72.7 747 725 731 73.0 72.3 77.3

Tic-tac-toe 65.3 88.7 70.2 86.3 100 81.0 92.1 983
Waveform 33.9 771 808 704 753 80.5 81.7 83.2
Wine 39.9 100 899 879 916 63.0 98.9 98.3

For each dataset, baseline accuracy and accuracy (%) obtained with
KRIMP classification is given, as well as accuracies obtained with 6 other
classifiers are given. We use HRM as abbreviation for HARMONY. The
highest accuracy per dataset is displayed in boldface. For KRIMP with
post-acceptance pruning, per class, frequent itemsets mined at thresh-
olds found in Table 2.4 were used as candidates. All results are 10-fold
cross-validated.

50

2.9. Conclusions

Table 2.9: Confusion matrices

Mushroom Iris Heart
1 2 1 2 3 1 2 3 4 5
1 4208 0 1 47 2 0 1 142 22 9 6 2
2 0 3916 2 2 48 1 2 17 23 8 9 5
3 1 0 40 3 3 2 12 4 2
4 0 7 5 10 4
5 2 1 2 6 0

The values denote how many transactions with class column are clas-
sified as class row

Table 2.10: Evaluation of candidate and cover orders

Cover order
Standard Entry Area Random
F | L% acc. L% acc. L% acc. L% acc.

Standard 44.2 88.6 43.7 88.7 51.1 88.1 495 88.1
Standard’” 44.2 885 43.7 88.8 51.6 88.1 49.5 88.3
Length 452 88.0 439 879 554 87.1 49.1 788
Area 48.6 88.0 64.5 884 644 881 650 88.0
Random 494 86.8 51.2 870 575 86.8 50.8 87.0

Results for 20 combinations of candidate and cover orders for
KRiMP with post-acceptance pruning. Shown are average relative
KRIMP compression, L%, and average classification accuracy (%) on
a number of datasets. Results for compression and classification are
averaged over 16 resp. 11 datasets. Table 2.11 shows which datasets
were used and at what minsup thresholds the candidate sets, F, were
mined for these experiments.

o1

2. KRIMP — MINING ITEMSETS THAT COMPRESS

Table 2.11: Datasets and settings used for the candidate and cover order ex-
periments

minsup Used for
Dataset all closed Compression Classification
Adult 20 1 Ve Ve
Anneal 1 1 v v
Breast 1 1 v v
Chess (kr—k) 1 1 v
DNA amplification 10 1 v
Tonosphere 50 1 v v
Iris 1 1 v v
Led7 1 1 v v
Letter recognition 50 20 v
Mammals 545 545 v
Mushroom 1 v v
Nursery 1 1 v
Pen digits 20 1 v v
Pima 1 1 v v
Waveform 50 5 v v
Wine 1 1 Ve v

Details for which datasets and which settings were used for the candi-
date and cover order experiments. Per dataset, shown are the minsup
thresholds at which candidate sets, F, were mined for all and closed
frequent itemsets. Ticks indicate which datasets were used for com-
pression experiments and which for the classification experiments. In
total, tens of thousands of individual KRIMP compression runs were
required for these order experiments.

52

Chapter

Characterising the Difference

Characterising the differences’ between two databases is an often occurring
problem in data mining. Detection of change over time is a prime example,
comparing databases from two branches is another one. The key problem is to
discover the patterns that describe the difference. Emerging patterns provide
only a partial answer to this question.

In the previous chapter, we showed that the data distribution can be cap-
tured in a pattern-based model using compression. Here, we extend this ap-
proach to define a generic dissimilarity measure on databases. Moreover, we
show that this approach can identify those patterns that characterise the differ-
ences between two distributions. Experimental results show that our method
provides a well-founded way to independently measure database dissimilarity
that allows for thorough inspection of the actual differences. This illustrates
the use of our approach in real world data mining.

IThis chapter has been published as [110]: J. Vreeken, M. van Leeuwen & A. Siebes.
Characterising the Difference. In Proceedings of the KDD’07 (2007).

93

3. CHARACTERISING THE DIFFERENCE

3.1 Introduction

Comparing databases to find and explain differences is a frequent task in many
organisations. The two databases can, e.g. be from different branches of the
same organisations, such as sales records from different stores of a chain or
the “same” database at different points in time. In the first case, the goal of
the analysis could be to understand why one store has a much higher turnover
than the other. In the second case, the goal of the analysis could be to detect
changes or drift over time.

The problem of this kind of “difference detection” has received ample atten-
tion, both in the database and in the data mining community. In the database
community, OLAP [31] is the prime example. Using roll-up and drill-down
operations, a user can (manually) investigate, e.g. the difference in sales be-
tween the two stores. Emerging pattern mining [37] is a good example from
the data mining community. It discovers those patterns whose support increase
significantly from one database to the other.

Emerging patterns, though, are often redundant, giving many similar pat-
terns. Also, the growth rate that determines the minimal increase in support
has a large impact on the number of resulting patterns. Lower growth rates
give large amounts of patterns, of which only some are useful. To discover only
“interesting” differences would require the data miner to test with multiple
growth rate settings and, manually, trace what setting gives the most useful
results and filter those from the complete set of emerging patterns.

In this chapter we propose a new approach to ‘difference detection’ that
identifies those patterns that characterise the differences between two databases.
In fact, the approach just as easily identifies the characteristic differences be-
tween multiple databases. As in the previous chapter, we restrict ourselves
to frequent itemset mining, although the methodology easily extends to other
kinds of patterns and data types, as mentioned in Section 2.9.

In Chapter 2 we attacked the well-known frequent itemset explosion at
low support thresholds using MDL. Also, we introduced a simple classification
algorithm which scores on-par with state-of-the-art classification algorithms.

The approach towards difference detection introduced in this chapter is
again based on compression. First, we use compression to define a dissimilar-
ity measure on databases. Then we introduce three ways to characterise the
differences between two (dis)similar databases.

Let D1 and D4 be the two databases, with transactions concerning the same
sets of items, of which we need to analyse the differences. In Section 3.3, we
first consider the difference in compressed length for the transactions in D,
when compressed by the MDL-compression schemes. The MDL-principle as
well as our results in classification imply that the compression scheme induced

54

3.2. Preliminaries

from Dy should in general do worse than the scheme induced from D;. This is
verified by some simple experiments.

Next, we aggregate these differences per transaction by summing over all
transactions in D; and normalising this sum by the optimal code length for D;.
This aggregation measures how different a database is from D;. This is verified
by experiments that show the correlation between this similarity measure and
the confusion matrix of our classification algorithm briefly introduced above
and in Section 3.2. Finally, this simple measure is turned into a dissimilarity
measure for any pair of databases by taking the maximum of how different D,
is from Dy and vice versa. Again, the MDL-principle implies that this is a
dissimilarity measure. Experiments verify this claim by showing the correla-
tion between this dissimilarity measure and the accuracy of our classification
algorithm.

The result of Section 3.3 is a dissimilarity measure for a pair of databases,
based on code tables. If the dissimilarity is small, the two databases are more
or less the same and a further analysis of the differences will not show anything
interesting. The topic of Section 3.4 is on how to proceed if the dissimilarity is
large. In that section, we introduce three ways to characterise these differences.
The first approach focuses on the usage-patterns of the code table elements,
while the second focuses on how (sets of) transactions are compressed by the
two different schemes. The third and last approach focuses on differences in
the code tables themselves. All three approaches highlight complementary,
characteristic, differences between the two databases.

In Section 3.5 we discuss related work and describe the differences with our
work. We round up with conclusions in Section 3.6.

3.2 Preliminaries

In this chapter, we build upon the KrRiMP algorithm and KriMP Classifier we
introduced in the previous chapter.

For the sake of readability, we will use some notational shortcuts in the
sections that follow:

CTy(D;) = L(D;|CT;)
CTi(t) = L(t|CTy)
During the classification experiments reported in the previous chapter, we
made some interesting observations in the distributions of the code lengths.

Figure 3.1 shows the encoded lengths for transactions of a single class, encoded
by code tables constructed for each of the three classes. Not only gives the

95

3. CHARACTERISING THE DIFFERENCE

code table constructed for these transactions shorter encodings, the standard
deviation is also much smaller (compare the histogram on the left to the other
two). This means that a better fit of the code table to the distribution of the
compressed data results in a smaller standard deviation.

Experimental Setup

Although a lot of time series data is being gathered for analysis, no good
benchmark datasets with this type of data currently exist. We therefore decided
to use a selection from the UCI repository [32], which has been commonly used
for emerging patterns [37] and related topics before.

As these are all datasets containing multiple classes, we look at the dif-
ferences between classes. Hence, we split each dataset on class label C' and
remove this label from each transaction, resulting in a database D; per class
C;. A code table induced from D; using KRIMP is written as C'T;.

For many steps in Sections 3.3 and 3.4, we show results obtained with
the datasets Heart and Wine because of their properties: they are interesting
because they consist of more than 2 classes, but don’t have too many classes.
Please note this selection is only for the purpose of presentation; results we
obtained with other (larger) datasets are similar. In fact, KRIMP is better
at approximating data distributions of larger databases, providing even more
reliable results.

Characteristics of all datasets used are summarised in Table 3.8, together
with the minimum support levels we use for mining the frequent itemsets that
function as candidates for KrRIMP. All experiments in this chapter are done
with all frequent itemsets and KRIMP with pruning.

3.3 Database Dissimilarity

In this section, we introduce a dissimilarity measure for transaction databases.
This measure indicates whether or not it is worthwhile to analyse the differ-
ences between two such databases. If the dissimilarity is low, the differences
between the two databases are small. If the measure is high, it is worthwhile
to investigate the differences. Rather than defining the similarity measure up-
front followed by a discussion and illustration of its properties, we “develop” the
measure in a few steps as that allows us to discuss the intuition that underlies
the definition far easier.

56

3.3. Database Dissimilarity

CcT,
60
«
<
2
S 404
9 a0
3
c
G
5
*
20
T T T T T
0 0 20 30 40 50 60 70 8 90 100
Code lengths (bits)
T,
60
«
=3
2
=1
S 40
3
c
4
*
20
0
10 20 3 40 50 6 70 8 9 100
Code lengths (bits)
CT3
60
«
<
2
T 40
®
3
c
s
*
20
o

10 20 30 40 S0 60 70 8 9 100
Code lengths (bits)

Figure 3.1: Heart; encoded transaction lengths for all transactions belonging to
one class (D), encoded with the code tables constructed for each of the three
classes (top to bottom: CTy, CTy, CTj3).

57

3. CHARACTERISING THE DIFFERENCE

Differences in Code Lengths

The MDL principle implies that the optimal compressor induced from a database
D; will generally provide shorter encodings for its transactions than the opti-
mal compressor induced from another database Dy. Our earlier experiments
on classification verify that this is also true for the code table compressors
KRimP discovers heuristically; see Section 3.2.

More in particular, denote by H; the optimal compressor induced from
database D; and let ¢ be a transaction in D;. Then, the MDL principle implies
that:

|H1(t) — Ha(t)]

— is small if ¢ is equally likely generated by the underlying distributions of
Dl and DQ

— 1is large if t is more likely generated by the distribution underlying one
database than that it is generated by the distribution underlying the
other.

In fact the MDL principle implies that if the code length differences are
large (the second case), then on average the smallest code length will be Hj (t).
Our classification results suggest that something similar should hold for the
code table compressors discovered by KRIMP. In other words, we expect that

CTy(t) — CTi(t)

measures how characteristic t is for D;. That is, we expect that this difference
is most often positive and large for those transactions that are characteristic
for D;.

In Figures 3.2 and 3.3, code length differences are shown for two datasets,
respectively for transactions of the Wine; and Heart; databases. As we ex-
pected, virtually all code length differences are positive. This means that in
practice the native code table does indeed provide the shortest encoding.

In the case of the Wine; database depicted in Figure 3.2, we see a whopping
average difference of 45bits per transaction. The shapes of the two histograms
also show a nice clustering of the differences between the encoded lengths. No
negative differences occur, each single transaction is compressed better by its
native code table. This confirms that MDL creates code tables that are truly
specific for the data.

We see the same general effect with Heart; in Figure 3.3, as again the peaks
of the distribution lay within safe distance from the origin. From the histograms
there is little doubt that code tables CT, and CTj are encoding data from a
different distribution than they have been induced from. More importantly,

o8

3.3. Database Dissimilarity

CT,-CT, CT3-CTy
24 24
@ «
i= f=
k] S
© o
© ©
]]
f= i=
H* =+
6
04
o 10 20 30 40 50 60 70 80 o 10 20 30 40 50 60 70 80
Code length differences (bits) Code length differences (bits)

Figure 3.2: Wine; code length difference histograms for transactions in Dj:
encoded length differences between CTy and CT; (left) and between CT5 and

CT,-CT,4 CT5-CT,y

transactions
transactions

-10 0 10 20 30 40 50 60 70 80 B 10 20 30 40 50 60 70 80
Code length differences (bits) Code length differences (bits)

Figure 3.3: Heart; code length difference histograms for transactions in Dj:
encoded length differences between CTy and CT; (left) and between CT5 and

99

3. CHARACTERISING THE DIFFERENCE

comparing these diagrams unambiguously shows that it is possible to use the
differences in encoded lengths to measure the amount of change between data.
For example, as the differences on the left histogram are clearly smaller than
in the situation on the right, this seems to imply that Heart classes 1 and 2
are more alike than classes 1 and 3. How to investigate this hypothesis further
will be discussed in the next section. First we continue the development of our
dissimilarity measure.

Aggregating Code Length Differences

In the previous subsection we have seen that the histograms of code length
differences give good insight in the differences between two databases. The
next logical step towards the definition of a dissimilarity measure is to aggregate
these differences over the database. That is, to sum the individual code length
differences over the complete database.

Straightforward aggregation, however, might give misleading results for two
reasons:

— code length differences can be negative, so even if D; and D, are rather
different, the aggregated total might be small.

— if D is a large database, the aggregated total might be large even if Dy
is very similar to D;.

As already mentioned in the previous subsection, the MDL principle implies
that for the MDL-optimal compressors H; and Hs, the expected average value
of Ho(t) — Hi(t) is positive. In other words, negative code length differences
will be relatively rare and won’t unduly influence the aggregated sum.

Our results in classification and, more importantly, the results of the pre-
vious subsection indicate that the same observation holds for the code table
compressors C'T7 and CT, induced by KriMP. Clearly, only experiments can
verify this claim.

The second problem indicated above is, however, already a problem for
the MDL-optimal compressors H; and Hs. For, the expected value of the
sum of the code length differences is simply the number of transactions times
the expected average code length difference. Since the latter number is positive
according to the MDL principle, the expected value of the sum depends linearly
on the number of transactions on the database.

Clearly, the “native” encoded size of the database, C'T1(D;), also depends
on the size of the database. Therefore, we choose to counterbalance this prob-
lem by dividing the sum of code length differences by this size. Doing this, we
end up with the Aggregated Code Length Difference, denoted by ACLD and

60

3.3. Database Dissimilarity

Table 3.1: Heart; aggregated code length differences.

Dy Dy D3 Dy Dy

CTy 0.00 036 0.71 0.88 1.58
CT, 085 0.00 0.60 0.65 1.03
CT; 1.65 0.78 0.00 0.60 1.25
cT, 185 0.65 0.61 0.00 1.09
CTs 218 1.07 0.72 0.87 0.00

Table 3.2: Wine; aggregated code length differences.

D, Do Ds

cTy 0.00 1.27 1.32
CcT, 113 0.00 1.73
CT; 1.14 1.68 0.00

defined as
CT5(Dy) — CT1(Da)

CTy (D)

Note that ACLD is an asymmetric measure: it measures how different Do
is from D1, not vice versa! While one would expect both to be in the same
ballpark, this is by no means given. The asymmetry is further addressed in
the next subsection. To clearly indicate the asymmetry, the parameters are
asymmetric: the first parameter is a database, while the second is a code table.

Given this definition, we can now verify experimentally whether it works or
not. That is, do greater dissimilarities imply larger differences and vice versa?

In Table 3.1 we read the aggregated code length differences for all possible
combinations of code tables and class databases for the Heart dataset. It is
immediately clear there are distinct differences between the class distributions,
as measurements of 1.00 imply code lengths averaging twice as long as that of
the actual class. We also notice that while the data distributions of databases
1 and 5 are quite distinct, the lower measurements between the other three
classes indicate that their distributions are more alike.

For the Wine database the class distributions are even more adrift than
those in the Heart database, for all cross-compressions result in encodings more
than twice as long as the native ones. This is completely in line with what we
have seen before in Figure 3.2, in which we showed there is no uncertainty in
keeping transactions of the Wine databases apart based on encoded lengths.

ACLD(D,,CTy) =

61

3. CHARACTERISING THE DIFFERENCE

Table 3.3: Heart: classification confusion matrix.

Classified Class
as 1 2 3 4 5
1 137 24 9 6 3
2 12 11 11 7 5
3 6 8 7T 8 1
4 8 10 79 4
5 1 2 2 5 0

Table 3.4: Wine: classification confusion matrix.

Classified Class
as 1 2 3
1 65 3 6
2 5 55 0
3 1 1 42

If this technique truly quantifies the likeliness of the distributions belonging
to some data, intuition tells us there has to be a close relation with the classifi-
cation quality based on encoded transaction lengths. We can easily check this
by comparing the aggregated code length differences with the confusion matri-
ces for these databases. We therefore ran 10-fold cross validated classification
experiments for these databases, as we did in the previous chapter.

The confusion matrix for the Heart database, in Table 3.3, clearly shows
the intuition to be correct, as the number of misclassified instances drops com-
pletely according to ACLD. While 24 transactions of class 2 are misclassified as
belonging to class 1, we see in Table 3.1 that these two classes are measured as
rather similar. In fact, if we sort the measurements in Table 3.1 per class, we
find the same order as when we sort Table 3.3 on the number of misclassifica-
tions. The measured difference thus directly relates to the ability to distinguish
classes.

In Table 3.4 we see the same pattern with the Wine database as with the
Heart database before: the lowest dissimilarities relate to the most misclassifica-
tions. We also observe that while analysis of individual code length differences,
like Figure 3.2, suggests there should be no confusion in classification, a number
of transactions are misclassified. These can be tracked back as being artefacts
of the 10-fold cross-validation on a small database.

62

3.3. Database Dissimilarity

The Database Dissimilarity Measure

The experiments presented above verified that the aggregated differences of
database encodings provide a reliable means to measure the similarity of one
database to another. To make it into a true dissimilarity measure, we would
like it to be symmetric. Since the measure should indicate whether or not we
should investigate the differences between two databases, we do this by taking
the maximum value of two Aggregated Code Length Differences:

Hl&X{ACLD(Dl, CTQ), AfélchD('Z)g7 CTl)}

This can easily be rewritten in terms of compressed database sizes, without
using the ACLD function.

Definition 6. For all databases x and y, define the code table dissimilarity
measure DS between x and y as

CT,(D,) — CT,(D,) CT,(D,)— CT,(Dy)

DS(x,y) = max{ CT,(Dy) ; T, (Dy) }

The databases are deemed very similar (possibly identical) iff the score is

0, higher scores indicate higher levels of dissimilarity. Although at first glance

this method comes close to being a distance metric for databases, this is not

entirely the case. A distance metric D must be a function with non-negative

real values defined on the Cartesian product K x K of a set K. Furthermore,
it must obey the following requirements for every k,l,m € K:

1. D(k,1) = 0 iff k = I (identity)
2. D(k,l) = D(l, k) (symmetry)
3. D(k,l) 4+ D(l,m) > D(k,m) (triangle inequality)

For the MDL optimal compressors, we can prove that DS will be positive.
For our code table compressors, we can not. However, the experiments in the
previous two subsections as well as those in this one indicate that DS is unlikely
to be negative. As we can not even guarantee that DS is always positive, we
can certainly not prove the identity axiom. The second axiom, the symmetry
axiom holds, of course, by definition. For the triangle inequality axiom we
again have no proof. However, in the experiments reported on this subsection
the axioms hold. In other words, for all practical purposes our measure acts
as a distance measure. However, to clearly indicate that our measure is not a
proven distance metric we call it a dissimilarity measure.

63

3. CHARACTERISING THE DIFFERENCE

Table 3.5: Heart: dissimilarity.

Dy Dy D3 Dy

Dy 0.85

Ds 1.65 0.78

Dy 185 0.65 0.61

Ds 218 1.07 1.25 1.09

Table 3.6: Nursery: dissimilarity.

Dy Do D3y Dy

Dy 2.62

Ds 283 2.04

Dy, 310 191 4.05

Ds 738 1.26 10.12 1.54

Table 3.7: Wine: dissimilarity.

D, Do

D, 1.27
Dy, 132 1.73

The dissimilarity measurements for the Heart, Nursery and Wine database
are given in respectively Tables 3.5, 3.6 and 3.7. One of the most striking ob-
servations is that many of the measurements are greater than 1.0, meaning that
the cross-compressed databases are more than twice as large as the natively-
compressed databases. The differences between the Nurserys; and Nurserys
datasets are such that a dissimilarity measurement of 10.12 is the result: a
difference of a factor 11 of the average encoded length of a transaction.

In Table 3.8 a summary of datasets, their characteristics and dissimilarity
results is given. For each dataset, the lowest and the highest observed dissimi-
larity is listed. A full results overview would obviously require too much space;
datasets with many classes have squared as many database pairs of which the
dissimilarity can be measured.

Overall, we see that the dissimilarities between the classes of the UCI
datasets vary quite a bit. Some datasets seem to have very little difference

64

3.4. Characterising Differences

Table 3.8: Database characteristics.

KRIiMP DS
Dataset |D| #classes minsup Ace. (%) min mazx
Adult 48842 2 20 84.6 0.60 0.60
Chess (kr—k) 28056 18 10 58.0 0.29 2.69
Connect—4 67557 3 50 69.9 0.18 0.28
Heart 303 5 1 52.5 0.61 2.18
Iris 150 3 1 96.0 2.06 13.00
Led7 3200 10 1 75.3 1.27 11.29
Letter recognition 20000 26 50 68.1 0.43 2.83
Mushroom 8124 2 50 100 8.24 8.24
Nursery 12960 5 1 924 1.26 10.12
Pen digits 10992 10 20 88.6 1.33 4.43
Tic-tac—toe 958 2 1 87.1 0.62 0.62
Wine 178 3 1 97.7 127 1.73

Candidate minsup and class dissimilarity measurements for a range of
UCI datasets. As candidates, all frequent itemsets were used up to the
given minimum support level.

between classes (Connect—4, Adult, Tic—tac—toe), others contain rather large
dissimilarity (Mushroom, Iris, Led7).

Another interesting comparison is between the dissimilarities and the classi-
fication results also reported in that table. There is a clear correlation between
the two. The larger the dissimilarity, the better the classification results. This
pattern is less clear for datasets containing small classes, which is caused by
the fact that MDL doesn’t work well for small data sets.

This observation is interesting because classification errors are made on indi-
vidual transactions, whereas DS is an aggregated measure. In other words, the
observation verifies that this aggregated measure reflects what happens at the
level of individual transactions. This is exactly the property our dissimilarity
measure should hold.

3.4 Characterising Differences
The first benefit of our dissimilarity measure is that it quantifies the difference

between databases, the second advantage is the ability to characterise those
differences.

65

3. CHARACTERISING THE DIFFERENCE

There are three methods available for difference analysis, which zoom in to
separate levels of difference between the distributions. First, we can compare
the code table covers of the databases. This directly informs us which patterns
that are important in one database are either over or under-expressed in another
database. The second approach is to zoom in on how specific transactions are
covered by the different code tables. This reveals in detail where differences
are identified by the code tables. Thirdly, we can extract knowledge about
the specific differences and similarities between the distributions from the code
tables.

Comparing Database Covers

The most straightforward, but rather informative method for difference anal-
ysis is the direct comparison of database covers. Such evaluation immediately
identifies which patterns are over and under-expressed, showing us the charac-
teristics of the differences in structure between the two databases.

To run this analysis, we first use KRIMP to obtain a code table for database
Dy and use it to cover database D;. Because the itemsets and their usages in
the code table capture the data distribution of database D5, the usages found
by covering database D, are expected to be different if the two databases are
different.

Identification of these differences is done by finding those patterns in the
code table that have a large shift in frequency between the two database cov-
ers. The same process can be applied vice versa for even better insight of the
differences.

If the distribution is really different, we would expect to see a dramatic
increase in use of the singletons caused by a decrease in use of the larger, more
specific, sets. Slighter differences will lead to more specific shifts in patterns
usage, with less of a shift towards singleton usage.

An example visualisation can be seen in Figure 3.4. A code table for Wine
D1 has been constructed and used to cover all three databases. A quick glance
shows that our hypothesis on the use of singletons is correct: D; is covered by
quite some sets of 2 or more items, but both Dy and D3 are covered largely by
singletons.

Of special interest is the contrast in peaks between the plots, indicating
(strong) shifts in pattern usage. A rather strong difference in pattern usage is
visible for the lower indexes in the code table, corresponding to the longest,
most specific, patterns. However, in this figure the high peaks are also indica-
tive; we marked the peaks of an interesting case A1l and A2. These peaks are
at exactly the same code table element, meaning that this pattern is used quite
often in the covers of both D; and Dy. Note that it is not used at all in the

66

3.4. Characterising Differences

Sets (at least 2 items) | Singletons
| DB]
20 |
Al |
(]
% 10 AN } } ‘
> |
|
0
' DB,
40 }
|
|
30 |
& A2
3 AN
20
[
[
10
0
|
|
| DB 3
50 [
B
N
40 I
|
v |
o
5 30 I
=)
ll
20 l
[
I
10
0
0 20 40 60 80 100

Code table elements
Figure 3.4: Comparing database covers. Each database of Wine has been

covered by code table CTy. Visualised is the absolute usage for each of the
code table elements.

67

3. CHARACTERISING THE DIFFERENCE

Transaction 1 Transaction 2

ETEDHEDDTDOBD@ EEETDHETDTDOOD

Ty

cT,

EHETDOOEOOEOR DOODODBBDDBB®

Figure 3.5: Wine; two transactions from D3 encoded by CT5 (above) and C'Ty
(below). The green rounded boxes visualise the itemsets making up the cover
of the transaction. Each of the itemsets is linked to its code by the dashed line.
The widths of the blue boxes, the codes, represent the actual computed code
lengths.

cover of Dj; hence this pattern could really give us a clue as to what differen-
tiates Dy and Dy from D3. Another interesting peak is the one indicated with
B: although it is also applied in the other covers, this pattern is clearly used
much more often to cover Ds.

Comparing Transaction Covers

A second approach for difference characterisation zooms in on individual rows
in a database, and is thus especially useful when you are interested in specific
transactions: why does a certain transaction belong to one database and not
to another? Again, we use our code tables to inspect this.

Suppose we have two databases and their respective code tables. After
computing the individual code length differences, it is easy to pick out those
transactions that fit well in one database and not in another. After selecting a
transaction, we can cover it with both code tables separately and visualise which
patterns are used for this. In general, it will be covered by longer patterns with
higher usage if it belongs to a certain distribution than if it does not. Manual
inspection of the individual transaction covers can reveal valuable knowledge.

As an example, have a look at another Wine example in Figure 3.5. The
encodings by C'Th and CTjs of two sets from D3 are shown. Left and right show
the same transactions, but they are covered by different itemsets (depicted by
the rounded boxes). The itemsets are linked to their codes with the dashed

68

3.4. Characterising Differences

lines. The width of each black or white code represents the length of that
particular code; together the sum of these widths makes up the total length of
the encoded transaction.

Looking at the upper transaction, we observe that both code tables cover
the transaction with itemsets of intermediate length. However, C'T3 uses less
and different patterns in its cover than CTj. Moreover, the code lengths are
obviously shorter, relating to high occurrence in the distribution from which
C'T5 was induced. For further inspection of how important such patterns are,
we zoom in to the pattern level in the third approach.

The covers of the second transaction give an even larger contrast than the
previous one. The native code table covers the transaction with few and large
patterns, while the other one uses only singletons. We may therefore conclude
this transaction fits very well in its native distribution and very bad in the
other. This also shows in the lengths of the encodings. Both examples show
again that more singletons are used in a cover when data doesn’t belong to a
distribution.

Comparing Code Tables

The final third method for difference inspection focuses on the individual pat-
terns in a data distribution. In order to pinpoint the differences in this respect,
we have to directly compare the patterns in two code tables.

The weight and importance of patterns in the code tables cannot be com-
pared naively, as for many of the patterns in a code table there does not have to
be a direct equivalent in the other code table. However, the set of patterns in a
code table can also be regarded as a database; in that fashion we can actually
apply code tables to each other to find out what the alternative encoded length
for each pattern is.

For each pattern in a code table we can compare its own encoded length to
that of the alternative provided by the other code table, similarly to what we
did for transactions in the previous subsection. Likewise, if the distributions
are similar, we expect the encoded lengths to be comparable; even if the code
tables use rather different patterns to encode it. In contrast, exactly those
patterns for which the encoded lengths differ significantly mark the difference
between the distributions.

We analysed the CTy and C'T3 code tables of the Wine dataset, and found
further evidence for what puts these databases apart. The first peak in the
topmost plot of Figure 3.4 corresponds to the pattern (0 16 19 20 24) from CT3,
which, due to its high relative usage, is encoded natively using only 1.4bits.
From the same figure we already know this pattern is not used when covering
the other databases; suggesting that perhaps neither this pattern, nor anything

69

3. CHARACTERISING THE DIFFERENCE

like it exists in the other code tables. Confirmation comes from an encoded
length of 12.6bits that CT» assigns to this pattern; making it one of the patterns
for which the encoded lengths differ most. As CTy cannot use any of the
more often used code table patterns, it has to resort to low-frequency singleton
encoding; arguably the least efficient method for encoding a pattern.

From the definition of the Wine database and analysis above we conclude
that the main difference between the two classes lies in the combination of
certain levels of malic acid (element 0) and a corresponding colour intensity
(16). While CT5 has a number of patterns that give these short encodings,
C'Ty has virtually none: this pattern does not occur in this data distribution.

The above example evidently shows that the differences between the data
distributions can be directly analysed, and that through comparison of the
code table encodings key differences can be extracted. Similarities as well as
the differences between distributions are pinpointed.

3.5 Related Work

Our dissimilarity measure DS is clearly related to the Normalised Information
Distance (NID) and its compression-based instantiation Normalized Compres-
sion Distance (NCD) [72]. With the NCD, general compressors like gzip are
used as Kolmogorov complexity approximators and as such compressed sizes
are used to measure distance between strings. As a generic distance, the NID
has been successfully applied in a plethora of clustering tasks including small
snippet based language and evolutionary tree rebuilding [30]. An adaptation
was developed that has some practical data mining applications, among which
compression-based anomaly detection [57].

However, the aim of the NID is different from ours: compression is only
used as a means to quantify differences, not to qualitatively find what these
differences are. In contrast, this is the main goal of our line of research. This
is illustrated by the results of both earlier chapters and this chapter. By con-
sidering transactional databases instead of individual strings and building code
tables that can be analysed, KRIMP provides a very natural way to gain insight
in the differences between data distributions.

Our dissimilarity measure is also related to Emerging Patterns [37], al-
though there are major differences. First of all, here we only consider patterns
that are MDL-wise important with respect to the data distribution of a sin-
gle database. The code table built allows to investigate other data sets (or
transactions) from that particular database’s perspective. This in contrast to
Emerging Patterns, which are by definition identified as differences between
pairs of databases, without regarding individual data distributions. Although
we here focus on identifying differences, KRIMP also reveals similarities be-

70

3.6. Conclusions

tween databases; arguably equally important when inspecting two databases.
Also, when a large number n of databases is to be compared, constructing n
code tables is computationally less intensive than mining n? sets of Emerging
Patterns.

Secondly, Emerging Patterns are defined as patterns having a large differ-
ence in support (growth rate) between two databases. However, the frequencies
used in our approach depend on the database cover, thus taking into account
other patterns (and their order) in the code table. Through these dependen-
cies, important changes in the structure of the data are enlarged and therefore
easier to spot.

Thirdly, KRIMP only selects small numbers of patterns. This allows for
manual inspection at all stages, from data distribution approximation to differ-
ence detection and characterisation. Emerging Patterns suffer from the same
combinatory explosion problem as frequent patterns: in order to capture all
differences, a low (zero) growth rate has to be used, resulting in obstructively
many patterns. Shorter descriptions have been defined for EPs, for example us-
ing borders [38], but as these only give a shorter description for the same set of
patterns, manual inspection remains impossible. The set of Emerging Patterns
cannot straightforwardly be reduced by KriMP. First, because it operates on
individual databases, not on pairs. Second, to satisfy the MDL assumption,
the candidate pattern set should enable the algorithm to grasp full data distri-
butions, not just differences. This is guaranteed by the frequent pattern set,
but not by a set solely consisting of EPs.

3.6 Conclusions

In the previous chapter, the MDL-principle and its implementation in the
KRrimp algorithm have proven themselves to be a reliable way for approxi-
mating the data distributions of databases. Here, we used this principle to
develop a database dissimilarity measure with which characteristic differences
between databases can be discovered.

Histograms for encoded transaction lengths, and the differences thereof,
show differences between data distributions straightforwardly. From the MDL
principle, code tables with a good fit on the distribution of some data provide
shorter codes and smaller standard deviations than code tables less suited for
the data at hand. The code length difference is shown to be a good indication
to how well a transaction fits a distribution.

We show the informative quality of the aggregation of the code length dif-
ferences. The measured likenesses show close relation to the confusion matrices
of earlier classification experiments; the number of misclassified instances drops
according to this measure.

71

3. CHARACTERISING THE DIFFERENCE

We define a generic dissimilarity measure on databases as the maximum
of two mirrored aggregated code length difference measurements; it is sym-
metric and well suited to detect and characterise the differences between two
databases. While we cannot prove it to fulfil the distance metric axioms, we
argued that these hold for all practical purposes.

A large advantage of our method is that it allows for thorough inspection of
the actual differences between data distributions. Based on the dissimilarity,
three methods for detailed inspection are proposed. The most detailed method
zooms in onto and compares the patterns that describe the data distribution in
the code tables. Individual transactions that do not fit the current distribution
well can be identified. Further, it can be analysed why they do not fit that dis-
tribution well. Last but not least is the possibility to take a more global stance
and pinpoint under or over expressed patterns in the respective databases.

Dissimilarity measures are key to many different data mining algorithms.
It is possible to apply our measure in a number of bioinformatics applications
using these algorithms. For example, in those cases where classification appears
to be hard; deeper insight in the causes of these problems may suggest new
promising research directions.

72

Chapter 4

Data Generation for Privacy
Preservation

Many databases will not or cannot be disclosed without strong guarantees that
no sensitive information can be extracted!. To address this concern several
data perturbation techniques have been proposed. However, it has been shown
that either sensitive information can still be extracted from the perturbed data
with little prior knowledge, or that many patterns are lost.

In this chapter we show that generating new data is an inherently safer
alternative. We present a data generator based on the models obtained by the
KRriMP algorithm. These are accurate representations of the data distributions
and can thus be used to generate data with the same characteristics as the
original data.

Experimental results show a very large pattern-similarity between the gen-
erated and the original data, ensuring that viable conclusions can be drawn
from the anonymised data. Furthermore, anonymity is guaranteed for suited
databases and the quality-privacy trade-off can be balanced explicitly.

IThis chapter has been published as [111]: J. Vreeken, M. van Leeuwen & A. Siebes.
Data Generation for Privacy Preservation. In Proceedings of the ICDM’07 (2007).

73

4. DATA GENERATION FOR PRIVACY PRESERVATION

4.1 Introduction

Many databases will not or can not be disclosed without strong guarantees
that no sensitive information can be extracted from it. The rationale for this
ranges from keeping competitors from obtaining vital business information to
the legally required protection of privacy of individuals in census data. How-
ever, it is often desirable or even required to publish data, leaving the question
how to do this without disclosing information that would compromise privacy.

To address these valid concerns, the field of privacy-preserving data mining
(PPDM) has rapidly become a major research topic. In recent years ample
attention is being given to both defender and attacker stances, leading to a
multitude of methods for keeping sensitive information from prying eyes. Most
of these techniques rely on perturbation of the original data: altering it in such
a way that given some external information it should be impossible to recover
individual records within certainty bounds.

Data perturbation comes in a variety of forms, of which adding noise [9],
data transformation [5] and rotation [28] are the most commonly used. At
the heart of the PPDM problem is the balance between the quality of the
released data and the amount of privacy it provides. While privacy is easily
ensured by strongly perturbing the data, the quality of conclusions that can be
drawn from it diminishes quickly. This is inherent of perturbation techniques:
sensitive information cannot be fully masked without destroying non-sensitive
information as well [56]. This is especially so if no special attention is given to
correlations within the data by means of multidimensional perturbation [55],
something which has hardly been investigated so far [77].

An alternative approach to the PPDM problem is to generate new data
instead of perturbing the original. This has the advantage that the original
data can be kept safe as the generated data is published instead, which renders
data recovery attacks useless. To achieve this, the expectation that a data
point in the generated database identifies a data point in the original database
should be very low, whilst all generated data adhere to the characteristics of
the original database. Data generation as a means to cover-up sensitivities
has been explored in the context of statistical databases [74], but that method
ignores correlations as each dimension is sampled separately.

We propose a novel method that uses data generation to guarantee privacy
while taking important correlations into account. For this we use the KrimPp al-
gorithm from Chapter 2. Using the patterns picked by MDL, we can construct
a model that generates data very similar (but not equal) to the original data.
Experiments show that the generative model is well suited for producing data
that conserves the characteristics of the original data while preserving privacy.

Using our generative method, it is easy to ensure that generated data points

74

4.2. The Problem

cannot reliably be traced to individual data points in the original data. We
can thus easily obtain data that is in accordance with the well-known privacy
measure k-anonymity [99]. Also, we can mimic the effects that can be obtained
with [-diversity [78].

Although preserving intrinsic correlations is an important feat, in some
applications preservation of particular patterns might be highly undesirable
from a privacy point of view. Fortunately, this can easily be taken care of in
our scheme by influencing model construction.

4.2 The Problem

Data Perturbation

Since Agrawal & Srikant [9] initiated the privacy-preserving data mining field,
researchers have been trying to protect and reconstruct sensitive data. Most
techniques use data perturbation and these can be divided into three main
approaches, of which we will give an overview here.

The addition of random noise to the original data, obfuscating without
completely distorting it, was among the first proposals for PPDM [9]. However,
it was quickly shown that additive randomisation is not good enough [6]. The
original data can often be reconstructed with little error using noise filtering
techniques [56] — in particular when the distortion does not take correlations
between dimensions into account [55].

The second class is that of condensation-based perturbation [5]. Here, after
clustering the original data, new data points are constructed such that clus-
ter characteristics remain the same. However, it has been observed that the
perturbed data is often too close to the original, thereby compromising pri-
vacy [28]. A third major data perturbation approach is based on rotation of
the data [28]. While this method seemed sturdy, it has recently been shown
that with sufficient prior knowledge of the original data the rotation matrix can
be recovered, thereby allowing full reconstruction of the original data [77]. In
general, perturbation approaches suffer from the fact that the original data is
used as starting point. Little perturbation can be undone, while stronger per-
turbation breaks correlations and non-sensitive information is also destroyed.
In other words, there is a privacy-quality trade-off which cannot be balanced
well.

In the effort to define measures on privacy, a few models have been proposed
that can be used to obtain a definable amount of privacy. An example is the
well-known k-anonymity model that ensures that no private information can be
related to fewer than k individuals [99]. A lack of diversity in such masses can
thwart privacy though and in some situations it is well possible to link private

75

4. DATA GENERATION FOR PRIVACY PRESERVATION

information to individuals. Improving on k-anonymity, the required critical
diversity can be ensured using the Il-diversity model. However, currently the
available method can only ensure diversity for one sensitive attribute [78].

Data Generation

The second category of PPDM solutions consists of methods using data gener-
ation, generating new (privacy preserving) data instead of altering the original.
This approach is inherently safer then data perturbation, as newly generated
data points can not be identified with original data points. However, not much
research has been done in this direction yet.

Liew et al. [74] sample new data from probability distributions indepen-
dently for each dimension, to generate data for use in a statistical database.
While this ensures high quality point estimates, higher order dependencies are
broken - making it unsuited for use in data mining.

The condensation-based perturbation approach [5] could be regarded as a
data generation method, as it samples new data points from clusters. How-
ever, as mentioned above, it suffers from the same problems as perturbation
techniques.

Problem Statement

Reviewing the goals and pitfalls of existing PPDM methods, we conclude that
a good technique should not only preserve privacy but also quality. This is
formulated in the following problem statement:

Problem 2 (Privacy and Quality Preserving Database). A database Dpyiy
induced from a database Dorig 1s privacy and quality preserving iff:

— no sensitive information in Dyriq can be derived from Dy given a limited
amount of external information (privacy requirement);

— models and patterns derived from Dpriy by data mining techniques are
also valid for Dorig (quality requirement).

From this statement follows a correlated data generation approach to induce
a privacy and quality preserving database Dp,;, from a database D, for
which the above requirements can be translated into concrete demands.

Using KRrRIMP, construct a model that encapsulates the data distribution of
Dorig in the form of a code table consisting of frequent patterns. Subsequently,
transform this code table into a pattern-based generator that is used to generate
Dpriv~

76

4.2. The Problem

It is hard to define an objective measure for the privacy requirement, as
all kinds of ‘sensitive information’ can be present in a database. We guarantee
privacy in two ways. Firstly, the probability that a transaction in D,,i4 is also
present in Dy, should be small. Secondly, the more often a transaction occurs
in Dorig, the less harmful it is if it also occurs in D,4,. This is encapsulated
in the Anonymity Score, in which transactions are grouped by the number of
times a transaction occurs in the original database (support):

Definition 7. For a database Dpyi based on Derig, define the Anonymity
Score (AS) as

P(t € Dyriv | t € D.PP).

orig

AS(Dpriva Dorig) = Z

SU
Suppepor'ig pp

In this definition, D*"PP is defined as the selection of D with only those
transactions having a support of supp. For each support level in D,,4, a score
is obtained by multiplying a penalty of 1 divided by the support with the
probability that a transaction in D,,;4 With given support also occurs in Dpy.js,.
These scores are summed to obtain AS. Note that when all transactions in
Dorig are unique (i.e. have a support of 1), AS is equal to the probability that
a transaction in D,riy also occurs in Dypiy.

Worst case is when all transactions in Dy, also occur in Dpriy. In other
words, if we choose Dp,i, equal to Dy,.iq, we get the highest possible score for
this particular database, which we can use to normalise between 0 (no privacy
at all) and 1 (best possible privacy):

Definition 8. For a database Dy based on Dyrig, define the Normalised
Anonymity Score (NAS) as

AS(Dpriva Dorig)
AS(Dm‘iga Dorig) ’

NAS(Dp7'iU7 Dorig) =1-

To conform to the quality requirement, the frequent pattern set of D,y
should be very similar to that of D,.;q. We will measure pattern-similarity
in two ways: 1) on database level through a database dissimilarity measure
(see Section 3.3) and 2) on the individual pattern level by comparing frequent
pattern sets. For the second part, pattern-similarity is high iff the patterns in
Dorig also occur in Dy, with (almost) the same support. So,

P(|supppriv — supporig| > 6) < €. (4.1)

The probability that a pattern’s support in D,y differs much from that in
Dpriv should be very low: the larger ¢, the smaller € should be. Note that this

7

4. DATA GENERATION FOR PRIVACY PRESERVATION

second validation implies the first: only if the pattern sets are highly similar,
the code tables become similar, which results in low measured dissimilarity.
Further, it is computationally much cheaper to measure the dissimilarity than
to compare the pattern sets.

4.3 Preliminaries

In this chapter we discuss categorical databases. A database D is a bag of
tuples (or transactions) that all have the same attributes {Ay,..., A,}. Each
attribute A; has a discrete domain of possible values V; € V.

The KrIMP algorithm operates on itemset data, as which categorical data
can easily be regarded. The union of all domains UV forms the set of items
Z. Each transaction ¢t can now also be regarded as a set of items t C P(Z).
Then, as in the previous chapters, an itemset X C 7 occurs in a transaction
t € Diff X C t. The support of X in D is the number of transactions in
the database in which X occurs. Speaking in market basket terms, this means
that each item for sale is represented as an attribute, with the corresponding
domain consisting of the values ‘bought’ and ‘not bought’.

In this chapter, KrRIMP without pruning is applied, since keeping all patterns
in the code table causes more diversity during data generation, as will become
clear later.

4.4 Krimp Categorical Data Generator

In this section we present our categorical data generation algorithm. We start
off with a simple example, sketching how the algorithm works by generating a
single transaction. After this we will detail the scheme formally and provide
the algorithm in pseudo-code.

Generating a Transaction, an Example

Suppose we need to generate a new transaction for a simple three-column cate-
gorical database. To apply our generation scheme, we need a domain definition
VY and a KRIMP code table C'T', both shown in Figure 4.1.

We start off with an empty transaction and fill it by iterating over all
domains and picking an itemset from the code table for each domain that has
no value yet. We first want to assign a value for the first domain, V7, so we
have to select one pattern from those patterns in the code table that provide a
value for this domain. This subset is shown as selection CTV1.

Using the usages of the code table elements as probabilities, we randomly
select an itemset from C'TV'; elements with high usage occur more often in the

78

4.4. Krimp Categorical Data Generator

Domain definition
D={V;={A,B}V,={C,D};V;={EF}}

Code table Selections
Ar Ay A Usage | cTV1 ' CTV2 ' CTV3
‘ 3 v o v -
| 3V V-
3 2 - v Y
1 1 1 ‘

v o - -
v

AV
v -

1 - -

@&
@[|- -

NS
oV

Figure 4.1: Example for 3-column database. Each usage is Laplace corrected
by 1.

original database and are thus more likely to be picked. Here we randomly pick
‘BD’ (probability 3/9). This set selects value ‘B’ from the first domain, but
also assigns a value to the second domain, namely ‘D’.

To complete our transaction we only need to choose a value for the third
domain. We do not want to change any values once they are assigned, as this
might break associations within an itemset previously chosen. So, we do not
want to pick any itemset that would re-assign a value to one of the first two
domains. Considering the projection for the third domain, CT"?, we thus have
to ignore set CF(2), as it would re-assign the second domain to ‘C’. From the
remaining sets E(3) and F(3), both with usage 3, we randomly select one - say,
‘E’. This completes generation of the transaction: ‘BDE’. With different rolls
of the dice it could have generated ‘BCFE’ by subsequently choosing CF(2) and
B(3), and so on.

Here we will detail our data generator more formally. First, define the
projection CTV as the subset of itemsets in CT that define a value for domain
V € V. To generate a database, our categorical data generator requires four
ingredients: the original database, a Laplace correction value, a minsup value
for mining candidates for the KRIMP algorithm and the number of transactions

79

4.

DATA GENERATION FOR PRIVACY PRESERVATION

Algorithm 6 Krimp Categorical Data Generator

—
e

11

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

PIcKRANDOMITEMSET(CT) :

22.
23.
24.

© ® N oW

GENERATEDATABASE(D, laplace, minsup, numtrans) :

gdb —
CT «— KrimP(D, MineCandidates(D, minsup))
for each X € CT do
X.usage «— X.usage + laplace
end for
V « D.getDomains
while |gdb| < numtrans do
gdb — gdb + GENERATETRANSACTION(CT, V)
end while
return gdb

GENERATETRANSACTION(CT, V) :

t—0

while V # () do
pick a random V €V
X « P1ckRANDOMITEMSET(CT"V)
t—tuX

end while

for each domain W for which X has a value do
CT «— CT\CT"
V—V\W

end for

return t

weights — {usagecr(X) | X € CT}
X — WeightedSample(weights, CT)
return X

that is to be generated. We present the full algorithm as Algorithm 6.
Generation starts with an empty database gdb (line 1). To obtain a code
table CT, the KriMP algorithm is applied to the original database D (2). A
Laplace correction laplace is added to all code table elements (3-5). Next, we
return the generated database when it contains numtrans transactions (7-10).
Generation of a transaction is started with an empty transaction ¢ (11). As
long as V is not empty (12), our transaction is not finished and we continue.
First, a domain V is randomly selected (13). From the selection CT", one
itemset is randomly chosen, with probabilities defined by their relative usages
(14). After the chosen set is added to t (15), we filter from CT all sets that

80

4.5. Experiments

would redefine a value - i.e. those sets that intersect with the definitions of the
domains for which ¢ already has a value (17-18). Further, to avoid reconsider-
ation we also filter these domains from V (19). After this the next domain is
picked from V and another itemset is selected; this is repeated until V is empty
(and ¢ thus has a value from each domain).

Note that code table elements are treated fully independently, as long as
they do not re-assign values. Correlations between dimensions are stored ex-
plicitly in the itemsets and are thus taken into account implicitly.

Besides the original database and the desired number of generated transac-
tions, the database generation algorithm requires two other parameters: laplace
and minsup. Both fulfil an important role in controlling the amount of privacy
provided in the generated database, which we will discuss here in more detail.

A desirable parameter for any data generation scheme is one that controls
the data diversity and strength of the correlations. In our scheme this pa-
rameter is found in the form of a Laplace correction. Before the generation
process, a small constant is added to the usage of the code table elements. As
code tables always contains all single values, this ensures that all values for all
categories have at least a small probability of being chosen. Thus, 1) a com-
plete transaction can always be generated and 2) all possible transactions can
be generated. For this purpose the correction needs only be small. However,
the strength of the correction influences the chance an otherwise unlikely code
table element is used; with larger correction, the influence of the original data
distribution is dampened and diversity is increased.

The second parameter to our database generation algorithm, minsup, has a
strong relation to the k-anonymity blend-in-the-crowd approach. The minsup
parameter has (almost) the same effect as k: patterns that occur less than
mansup times in the original database are not taken into account by KRIMP.
As they cannot get in the code table, they cannot be used for generation either.
Particularly, complete transactions have to occur at least minsup times in order
for them to make it to the code table. In other words, original transactions that
occur less often than minsup can only be generated if by chance often occurring
patterns are combined such that they form an original transaction. As code
table elements are regarded independent, it follows that when more patterns
have to be combined, it becomes less likely that transactions are generated that
also exist in the original database.

4.5 Experiments
In this section we will present empirical evidence of the method’s ability to gen-

erate data that provides privacy while still allowing for high quality conclusions
to be drawn from the generated data.

81

4. DATA GENERATION FOR PRIVACY PRESERVATION

Table 4.1: Database characteristics and dissimilarities.

KriMpP Dissimilarity (D.S)

Dataset D] |V|] minsup Gen. vs. orig. Orig. internal
Chess (kr—k) 28056 7 1 0.037 0.104
Iris 150) 1 0.047 0.158
Led7 3200 8 1 0.028 0.171
Letter recognition 20000 17 50 0.119 0.129
Mushroom? 8124 22 20 0.010 0.139
Nursery 12960 9 1 0.011 0.045
Page blocks 5473 11 1 0.067 0.164
Pen digits 10992 17 50 0.198 0.124
Pima 786 9 1 0.110 0.177
Quest A 4000 8 1 0.016 0.077
Quest B 10000 16 1 0.093 0.223

Database characteristics, candidate minsup and dissimilarity measure-
ments (between original and generated datasets) for a range of datasets.
As candidates, frequent itemsets up to the given minimum support level
were used.

Experimental Setup

In our experiments, we use a selection from the commonly used UCI repository
[32]. Also, we use two additional databases that were generated with IBM’s
Quest basket data generator [8]. To ensure that the Quest data obeys our
categorical data definition, we transformed it such that each original item is
represented by a domain with two categories, in a binary fashion (present or
not). Both Quest datasets were generated with default settings, apart from the
number of columns and transactions.

Characteristics of all used datasets are summarised in Table 4.1, together
with the minimum support levels we use for mining the frequent itemsets that
function as candidates for KRIMP.

For all experiments we used a Laplace correction parameter of 0.001, an
arbitrarily chosen small value solely to ensure that otherwise zero-usage code
table elements can be chosen during generation. All experimental results pre-
sented below are averaged over 10 runs and all generated databases have the
same number of transactions as the originals, unless indicated otherwise.

82

4.5. Experiments

250

7 — original

7 /\ —-— generated
200

Number of databases
L L L
\
[
=

_ 7

T T T 1
0.215 0.235 0.255 0.275

Dissimilarity to full original database

Figure 4.2: Histogram of dissimilarities between samples (original and gener-
ated) and the full original database, Chess (kr—k).

Results

To quantify the likeness of the generated databases to their original counter-
parts, we use the database dissimilarity measure as described in Section 3.3.
To judge these measurements, we also provide the dissimilarity between the
original database and independent random samples of half the size from the
original database.

In Table 4.1 we show both these internal dissimilarity scores and the dis-
similarity measurements between the original and generated databases. To put
the reported dissimilarities in perspective, note that the dissimilarity measure-
ments between the classes in the original databases range from 0.29 up to 12
(see Chapter 3). The measurements in Table 4.1 thus indicate clearly that the
generated databases adhere very closely to the original data distribution; even
better than a randomly sampled subset of 50% of the original data captures
the full distribution.

To show that the low dissimilarities for the generated databases are not
caused by averaging, we provide a histogram in Figure 4.2 for the Chess (kr-k)
dataset. We generated thousand databases of 7500 transactions, and measured
the dissimilarity of these to the original database. Likewise, we also measured
dissimilarity to the original database for equally many and equally sized inde-
pendent random samples. The peaks for the distance histograms lie very near

83

4. DATA GENERATION FOR PRIVACY PRESERVATION

uncorrelated
4 B correlated

Dissimilarity
.

Chess (kr-k) Iris Led7 Letter Nursery Page Pendigits Pima
blocks
Dataset

Figure 4.3: Dissimilarity scores between generated (with and without correla-
tions) and original databases.

to each other at 0.21 and 0.22 respectively. This and the very similar shapes
of the histograms confirm that our generation method samples databases from
the original distribution.

Turning back to Table 4.1, we notice that databases generated at higher
values of the minsup parameter show slightly larger dissimilarity. The effect
of this parameter is further explored in Figures 4.3 and 4.4. First, the bar
diagram in Figure 4.3 shows a comparison of the dissimilarity scores between
uncorrelated and correlated generation: uncorrelated databases are generated
by a code table containing only individual values (and thus no correlations be-
tween domains can exist), correlated databases are generated using the minsup
values depicted in Table 4.1 (at which the correlations in the data are captured
in the patterns in the code table). We see that when generation is allowed to
take correlations into account, the generated databases are far more similar to
the original ones.

Secondly, the graph in Figure 4.4 shows the dissimilarity between the origi-
nal Pen digits database and databases generated with different values for min-
sup. As expected, lower values of minsup lead to databases more similar to
the original, as the code table can better approximate the data distribution of
the original data. For the whole range of generated databases, individual value
frequencies are almost identical to those of the original database; the increase

84

4.5. Experiments

Dissimilarity
o
I
s L

T T T T
3000 2000 1000 0

Support

Figure 4.4: Dissimilarity between generated database (at different minsups)
and the original database for Pen digits.

in similarity is therefore solely caused by the incorporation of the right (type
and strength of) correlations.

Now that we have shown that the quality of the generated databases is very
good on a high level, let us consider quality on the level of individual patterns.
For this, we mined frequent itemsets from the generated databases with the
same parameters as we did for candidate mining on the original database. A
comparison of the resulting sets of patterns is presented in Table 4.2. We
report these figures for those databases for which it was feasible to compute
the intersection of the frequent pattern collections.

Large parts of the generated and original frequent pattern sets consist of
exactly the same items sets, as can be seen from the first column. For ex-
ample, for Led7 and Nursery about 90% of the mined itemsets is equal. In
the generated Pen digits database a relatively low 25% of the original patterns
are found. This is due to the relatively high minsup used: not all correlations
have been captured in the code table. However, of those patterns mined from
the generated database, more than 90% is also found in the original frequent
pattern set.

For itemsets found in both cases, the average difference in support between
original and generated is very small, as the second column shows. Iris is a
bit of an outlier here, but this is due to the very small size of the dataset.

85

4. DATA GENERATION FOR PRIVACY PRESERVATION

Table 4.2: Frequent pattern set comparison.

% equal % avg supp diff % avg supp

Dataset itemsets equal itemsets new itemsets
Chess (kr-k) 71 0.01 0.01
Iris 83 1.69 0.80
Led7 89 0.14 0.06
Nursery 90 0.04 0.03
Page blocks 75 0.06 0.02
Pen digits 25 0.50 0.59
Pima 60 0.30 0.14

Number of sets
o
S
C

0+ T P T
-0.015 -0.010 -0.005 0.000

1 T T | T 1
0.005 0.010 0.015

Frequent itemset support difference (%)

Figure 4.5: Difference in support, supp(Dpri») —supp(Dorig), for identical item-
sets in generated and original Led?7.

Not only the average is low, standard deviation is also small: as can be seen
from Figure 4.5, almost all sets have a very small support difference. The
generated databases thus fulfil the support difference demands we formulated
in Equation 4.1.

The third column of Table 4.2 contains the average supports of itemsets
that are newly found in the generated databases; these supports are very low.
All this together clearly shows that there is a large pattern-similarity, thus

86

4.5. Experiments

Table 4.3: Normalised Anonymity Scores.

Dataset NAS Dataset NAS
Chess (kr—k) 0.70 Page blocks 0.23
Iris 0.28 Pen digits 0.78
Led? 0.34 Pima 0.36
Letter recognition 0.69 Quest A 0.16
Mushroom 0.91 Quest B 0.19
Nursery 0.51

showing a high quality according to our problem statement.

However, this quality is of no worth if the generated data does not also
preserve privacy. To measure the level of provided anonymity, we calculate
the Normalised Anonymity Score as given by Definition 8. These scores are
presented in Table 4.3.

As higher scores indicate better privacy, some datasets (e.g. Mushroom,
Pen digits) are anonymised very well. On the other hand, other datasets (Page
blocks, Quest) do not seem to provide good privacy. As discussed in Section 4.4,
the minsup parameter of our generation method doubles as a k-anonymity
provider.

This explains that higher values for minsup result in better privacy, as the
measurements for Letter recognition, Mushroom and Pen digits indeed show.
Analogously, the (very) low minsup values used for the other databases result
in lower privacy (aside from data characteristics to which we’ll return shortly).

To show the effect of minsup in action, as an example we increase the minsup
for the Chess database to 50. While the so-generated database is still very
similar to the original (dissimilarity of 0.19), privacy is considerably increased
- which is reflected by a Normalised Anonymity Score of 0.85. For further
evidence of the k-anonymity obtained, we take a closer look at Pen digits,
for which we use a minsup of 50. Of all transactions with support < 50 in
the generated database, only 3% is also found in the original database with
support < 50. It is thus highly unlikely that one picks a ‘real’ transaction from
the generated database with support lower than minsup.

Although not all generated databases preserve privacy very well, the results
indicate that privacy can be obtained. This raises the question when privacy
can be guaranteed. This not only depends on the algorithm’s parameters, but
also on the characteristics of the data. It is difficult to determine the structure
of the data and how the parameters should be set in advance, but during the
generation process it is easy to check whether privacy is going to be good.

87

4. DATA GENERATION FOR PRIVACY PRESERVATION

1.0
09| +
0.8 +
o |
g 0.7 + +
wv .
g 064 f PenDigits
> -
[=4
2 05+ + Chess
<
3 |
(7
N 04
N
S 0.3i +
ot \
’ :++ Iris
0.1
0.0 T T T T T T 1
1 2 3 4 5 6 7 8

Average number of sets to generate a transaction

Figure 4.6: Average number of patterns used to generate a transaction versus
Normalised Anonymity Score, for all datasets in Table 4.1.

The key issue is whether transactions are generated by only very few or
many code table elements. In Figure 4.6 we show this relation: for each dataset
in Table 4.1, a cross marks the average number of itemsets used to generate
a single transaction and the Normalised Anonymity Score. In the top-right
corner we find the generated databases that preserve privacy well, including
Pen digits and Letter recognition. At the bottom-left reside those databases
for which too few elements per transaction are used during generation, leading
to bad privacy; Quest, Page blocks and Led7 are the main culprits. Thus, by
altering the minsup, this relation allows for explicit balancing of privacy and
quality of the generated data.

4.6 Discussion

The experimental results in the previous section show that the databases gen-
erated by our KRiMpP Categorical Data Generator are of very high quality;
pattern similarity on both database level and individual pattern level is very
high. Furthermore, we have shown that it is possible to generate high quality
databases while privacy is preserved. The Normalised Anonymity Scores for
some datasets are pretty high, indicating that hardly any transactions that oc-
cur few times in the original database also occur in the generated database. As

88

4.6. Discussion

expected, increasing minsup leads to better privacy, but dissimilarity remains
good and thus the trade-off between quality and privacy can be balanced ex-
plicitly.

A natural link between our method and k-anonymity is provided by the
minsup parameter, of which we have shown that it works in practice. While
we haven’t explored this parameter in this work, it is also possible to mimic [-
diversity, as in our method the laplace parameter acts as diversity control. The
higher the Laplace correction, the less strong the characteristics of the original
data are taken into account (thus degrading quality, but increasing diversity).
Note that one could also increase the Laplace correction for specific domains or
values, thereby dampening specific (sensitive) correlations - precisely the effect
l-diversity aims at.

To obtain even better privacy, one can also directly influence model con-
struction: for example, by filtering the KRiIMP candidates prior to building
the code table. Correlations between specific values and/or categories can be
completely filtered. If correlations between values A and B are sensitive, then
by removing all patterns containing both A and B from the candidate set, no
such pattern can be used for generation.

From Figure 4.6 followed that the number of patterns used to generate a
transaction greatly influences privacy: more elements leads to higher anonymity.
In the same line of thought, the candidate set can be filtered on pattern length;
imposing a maximum length directly influences the number of patterns needed
in generation, and can thus increase the provided anonymity.

The average number of patterns needed to generate a transaction is a good
indication of the amount of anonymity. We can use this property to check
whether parameters are chosen correctly and to give a clue on the characteristics
of the data. If already at high minsup few patterns are needed to encode a
transaction, and thus hardly any ‘sensitive’ transactions occur, the database is
not ‘suited’ for anonymisation through generation.

Reconsidering our problem statement in Section 4.2, the KRIMP generator
does a good job as solution for this PPDM problem. The concrete demands
we posed for both the quality and privacy requirements are met, meaning that
databases generated by our method are privacy and quality preserving as we
interpreted this in our problem statement. Generating new data is therefore a
good alternative to perturbing the original data.

Our privacy-preserving data generation method could be well put to practice
in the distributed system Merugu & Ghosh [84] proposed: to cluster privacy-
preserving data in a central place without moving all the data there, a privacy-
preserving data generator for each separate location is to be built. This is
exactly what our method can do and this would therefore be an interesting
application. Because the quality of the generated data is very high, the method

89

4. DATA GENERATION FOR PRIVACY PRESERVATION

could also be used in limited bandwidth distributed systems where privacy is
not an issue. For each database that needs to be transported, construct a
code table and communicate this instead of the database. If precision on the
individual transaction level is not important, new highly similar data with the
same characteristics can be generated.

In this chapter, we generated databases of the same size as the original, but
the number of generated transactions can of course be varied. Therefore, the
method could also be used for up-sampling. Furthermore, it could be used to
induce probabilities that certain transactions or databases are sampled from
the distribution represented by a particular code table.

4.7 Conclusions

We introduce a pattern-based data generation technique as a solution to the
privacy-preserving data mining problem in which data needs to be anonymised.
Using the MDL-based KRIMP algorithm we obtain accurate approximations of
the data distribution, which we transform into high-quality data generators
with a simple yet effective algorithm.

Experiments show that the generated data meets the criteria we posed in the
problem statement, as privacy can be preserved while the high quality ensures
that viable conclusions can still be drawn from it. The quality follows from
the high similarity to the original data on both the database and individual
pattern level. Anonymity scores show that original transactions occurring few
times only show up in the generated databases with very low probability, giving
good privacy.

Preserving privacy through data generation does not suffer from the same
weaknesses as data perturbation. By definition, it is impossible to reconstruct
the original database from the generated data, with or without prior knowledge.
The privacy provided by the generator can be regulated and balanced with the
quality of the conclusions drawn from the generated data. For suited databases,
the probability of finding a ‘real’ transaction in the generated data is extremely
low.

90

Chapter 5

StreamKrimp — Detecting Change
in Data Streams

Data streams are ubiquitous'. Examples range from sensor networks to finan-
cial transactions and website logs. In fact, even market basket data can be seen
as a stream of sales. Detecting changes in the distribution a stream is sampled
from is one of the most challenging problems in stream mining, as only limited
storage can be used. In this chapter we analyse this problem for streams of
transaction data from an MDL perspective.

Based on this analysis we introduce the STREAMKRIMP algorithm, which
uses the KRIMP algorithm to characterise probability distributions with code
tables. With these code tables, STREAMKRIMP partitions the stream into a
sequence of substreams. Each switch of code table indicates a change in the
underlying distribution. Experiments on both real and artificial streams show
that STREAMKRIMP detects the changes while using only a very limited amount
of data storage.

IThis chapter has been published as [69]: M. van Leeuwen & A. Siebes. StreamKrimp:
Detecting Change in Data Streams. In Proceedings of the ECML PKDD’08 (2008).

91

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

5.1 Introduction

Data streams are rapidly becoming a dominant data type or data source. Com-
mon examples of streams are sensor data, financial transactions, network traffic
and website logs. Actually, it would also be appropriate to regard supermarket
basket data as a stream, as this is often a - seemingly never-ending - flow of
transactions.

Detecting change in streams has traditionally attracted a lot of attention
[1,36,59,90], both because it has many possible applications and because it is
a hard problem. In the financial world, for example, quick reactions to changes
in the market are paramount. Supermarkets and on-line stores have to respond
quickly to changing interests of their customers. As a final example, web hosts
have to respond to changes in the way users use their websites.

The unbounded growth of a stream causes the biggest challenges in stream
mining: after all, only limited storage and computational capacity is available.
To address this, many existing algorithms use a sliding window [1,36,59]. The
problem with this approach is that often a fixed window size has to be set in
advance, which strongly influences the results. Some algorithms avoid this by
using an adaptive window size [118]. Many current methods focus on single-
dimensional item streams or multi-dimensional real-valued streams [1,2,59, 88,
90]. In this chapter, we address the problem of detecting change in what we
call data streams, that is, streams of transactions. A change in such a stream of
transactions is a change in the distribution the transactions are sampled from.
So, given a data stream, we would like to identify, online, a series of consecutive
substreams that have different sampling distributions.

Our approach to the problem is again based on the MDL principle. We
use code tables to compress the data stream, as this allows to characterise
the sampling distributions and to detect shifts between such distributions. If
we would have unbounded data storage, the MDL-optimal partitioning of the
data stream would be that one that minimises the total compressed length.
However, unbounded storage is clearly not realistic and we will have to resort
to a solution that is at best locally optimal.

With bounded storage, the best approach is to first identify distribution
P, at the beginning of the stream and then look for a shift to distribution
P;. When P, has been identified, we look for the next shift, etc. We give
MDL-based solutions for both of these sub-problems.

We turn this MDL-based analysis of the problem into algorithms using our
KRiMP algorithm (see Chapter 2). Here, we use the code tables given by this
algorithm as foundation for the change detection algorithm STREAMKRIMP,
which characterises streams on-the-fly.

We empirically test STREAMKRIMP on a variety of data streams. Results

92

5.2. The Problem Assuming Unbounded Storage

on two types of artificial streams show that changes in distribution are detected
at the right moment. Furthermore, the experiment on a real stream shows that
large data streams pose no problem and changes are accurately spotted while
noise is neglected.

5.2 The Problem Assuming Unbounded Storage

Preliminaries

We assume that our data consists of a stream of transactions over a fixed set
of items Z. That is, each transaction is simply a subset of Z and a stream S
is an unbounded ordered sequence of transactions, i.e. S = s18253--- in which
s; € Z. The individual transactions in a stream are identified by an integer;
without loss of generality we assume that this index is consecutive.

A finite stream T is a substream of S if T' consists of consecutive elements
of S. In particular S(i,) is the substream that starts at the i-th element and
stops at the j-th.

The Problem in Distribution Terms

We assume that S consists of a, possibly infinite, set of consecutive non-
overlapping subsequences S = s15953 - -+ such that

— s; is drawn i.i.d. from distribution P; on P(Z), and
- ViGNZPi#Pi+1.
So, informally, the problem is:

Given such a sequence S, identify the subsequences S;.

The, somewhat loosely formulated, assumption underlying this problem is
that the S; are big enough to identify. If the source of the stream would change
the sample distribution at every transaction it emits, identification would be
impossible.

From Distributions to MDL

The two main ingredients of the problem are:
1. How do we identify the distributions P;?

2. How do we recognise the shift from P; to P17

93

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

If both these problems are solved, the identification of the S; is trivial.

If the P; would belong to some well-known family of distributions, the first
problem would be solvable by parameter estimation. Unfortunately, this is not
a reasonable assumption.

Rather than trying to estimate the underlying distributions directly, we
resort, again, to MDL. In this chapter, we employ MDL both to identify the
P; and to identify the shifts from P; to Pj4.

Streams of transactions are subtly different from transaction databases.
The most important difference is that streams are unbounded. This means,
e.g. that some care has to be taken to define the support of an itemset in a
stream.

Itemsets in Streams

An itemset X is, as usual, a set of items. That is, X C Z. An itemset X occurs
in a transaction s; in stream S, iff X C s;. While streams may be infinite, at
any point in time we will only have seen a finite substream. In other words, we
only have to consider the support of itemsets on finite streams. The support of
an itemset X on a finite stream S is defined as usual: the number of transactions
in S in which X occurs.

Coding Finite Data Streams

As in the previous chapters, we use code tables to compress data streams. Since
we only consider finite data streams, we can treat a finite data stream S exactly
the same as a ‘regular’ dataset D. Hence, we have the following definition.

Definition 9. Let S be a finite data stream over I and let CT be a code table
that is code-optimal for S. The total size of the encoded data stream, denoted
by L(S,CT), is given by

L(S,CT)=L(S | CT)+ L(CT | S).
An optimal code table is one that minimises the total size.

Definition 10. Let S be a finite data stream over T and let CT be the set of
code tables that are code-optimal for S. CT°Pt € CT is called optimal if

CT" = argmin L(S, CT).
CTeCcT

The total size of the stream S encoded with an optimal code table CT°Pt is
called its optimal size and is denoted by L(S):

L(S) = L(S, CT*).

94

5.3. The Problem Assuming Bounded Storage

The Problem in MDL Terms

Now that we know how to code finite data streams, we can formalise our
problem in MDL terminology:

Problem 3 (Data Stream Partitioning with Unbounded Storage). Let S be
a finite data stream, partition S into consecutive substreams Si,...,Sk, such

that
k

Zﬁ(si) is minimised.

i=1
5.3 The Problem Assuming Bounded Storage

The Problem of Streams

Let S, T and U be finite data streams, such that U is the concatenation of .S
and T. There is no guarantee that the optimal partition of U coincides with
the optimal partition of S on the S-part of U. This observation points out two
disadvantages of the problem as stated above.

1. It assumes knowledge of the complete stream; this is a flagrant contra-
diction to the main idea of data streams: they are too big to store.

2. It disregards the dynamic nature of data streams. Changes in the under-
lying distribution can only be detected after the whole stream has been
observed. Clearly, such a posteriori results are not that useful.

In other words, we will have to settle for a partitioning that is at best locally
optimal.

Too Large to Store: One Distribution

If the stream S is sampled i.i.d. from one distribution only, the estimates of
P(X | S(1,n)) get closer and closer to their true value. That is, we have the
following lemma.

Lemma 6. Let data stream S be drawn i.i.d from distribution Q on P(T), then

VX e P(Z): lim P(X|S(1,n)) =Q(X).

n—oo

This well-known statistical result has an interesting result for code tables:
code tables converge! To make this more precise, denote by CT,, an optimal
code table on S,,. Moreover, let CT(S(1,5)) be a shorthand for Ler(S(1, 5)).

95

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

Theorem 7. Let data stream S be drawn i.i.d from distribution @ on P(T),
then

Vk e N: lim |[CT,(S(1,n)) — CT,h4x(S(1,n))| = 0.

Proof. Let FCT be a code table in which only the left-hand column is specified.
Lemma 6 implies that

VX e PZ)VkeN: lim |P(X |S(l,n))— P(X | S(l,n+k))| =0.

In other words, the optimal codes we assign to the itemsets in F'CT become the
same in the limit. But this implies that an optimal code table on S(1,n + k)
is, in the limit, also an optimal code table on S(1,n). O

That is, if our stream comes from one distribution only, we do not need to
store the complete stream to induce the optimal code table. A large enough
sample suffices. Denote by CT*P(S) the optimal code table induced from a
large enough “head” of the stream, i.e. after convergence has set in. This head
of the stream is denoted by H(S). Note that Theorem 7 also suggests a way
to check that the sample is large enough. If for some reasonable sized k,

IL(S(1,n),CT,) — L(S(1,n), CT i)

gets small, we may conclude convergence. Small is, of course, a relative notion:
if L(S(1,n),CT,) is millions of bits, a difference of a few thousand bits can
already be considered as small. Hence, it is better to look at a weighted version;
which is our improvement rate, defined as follows.

Definition 11. With the notations from above, the Improvement Rate IR is
given by
|L(S(17 n)a CTn) - L(S(la n)v CTn+k)|
L(S(1,n),CT,)

When IR becomes small in an absolute sense, we may conclude convergence.
We return to this observation later.

Too Large to Store: Detecting Change

So, for a data stream that comes from one distribution, the problem is easy.
The optimal code table can be computed from a large enough head of the
stream. After this code table has been computed, no further data storage is
necessary. The problem is, however, that after a while the distribution changes.
How can we detect that?

96

5.4. The Algorithm

Let the, finite, stream S = 5155 such that S; is sampled from distribution
P;. Moreover, let CT; denote the optimal code table on S;. To detect the
change in distribution, we need that

L(Sl, CTl) + L(SQ, CTQ) < L(S, CT)
This inequality translates to
L(Sy,CT??) + L(Sy, CTy??) < L(S1, CT{P) + L(Ss | CTYPP).

Note that L(S,CT) translates to the sum of the two heads encoded with
CT{"? because CT[P? has converged. That is, if there is no change in the
underlying distribution, CT;*? is still the correct code table. The second sum-
mand has the bar |, since we count L(CT**) only once.

Because S may be too big to store, we store H(S). To weigh both code
tables equally, we approximate the inequality as follows in the definition of a
split.

Definition 12. Let the, finite, stream S = S1S2 such that S; is sampled from
distribution P;. Moreover, let CT;"" denote the approzimated optimal code
table for S;. The pair (S1,S52) is called a split of S if

L(H(Sy), CTSP?) < L(H(Ss), CTP).

A split is called minimal if there is no other split (T1,T%) of S such that T} is
a substream of S1.

Note that this definition implies that we do not have to store H(S7) to detect
a change in the underlying definition. CT{"** provides sufficient information.
The Problem for Data Streams with Bounded Storage
We can now formalise our problem for data streams with bounded storage.

Problem 4 (Data Stream Minimal Split Partitioning). Let S be a data stream,
partition S into consecutive substreams S1,...,Sk,..., such that

VS, : (Si, Sit1) is the minimal split of S;S;+1.

5.4 The Algorithm

Finding the Right Code Table on a Stream

We can now translate the formal scheme presented in Section 5.3 to a prac-
tical implementation: assume that the stream S is sampled i.i.d. from one
distribution only and find CT*PP using KRIMP.

97

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

Algorithm 7 Find Code Table on Stream
FINDCODETABLEONSTREAM(S, of fset, blocksize, minsup, maxIR) :

numTransactions < blockSize
CT — KriMP(S(of fset, of fset + numTransactions), minsup)
i «— 00
while ir > mazIR do
numTransactions < numTransactions + blockSize
newCT — KRIMP(S(of fset, of fset + numTransactions), minsup)
ir < ImprovementRate(CT, newCT)
CT «— newCT
end while
return C'T

© ® N oW

—
e

The general idea of the algorithm presented in Algorithm 7 is simple: run
KRIMP on the growing head of a stream S until the resulting code tables con-
verge. As we know that individual transactions don’t make a large difference,
we work with blocks of blockSize transactions. Start with one block and obtain
a code table. For each block added to the head, a new code table is induced
and the Improvement Rate is computed. Whenever the I R drops below mazIR,
the code table is good enough and returned.

The other parameters are an offset that makes it possible to start anywhere
within the stream and the minsup used for mining KRIMP candidates.

Moreover, a Laplace correction is applied to each code table returned by
KRimMmP; this to ensure that each code table can encode each possible transac-
tion.

Detecting Change in a Stream

Given a code table induced on the head of a data stream, we would now like
to detect change in the sampling distribution of the rest of the stream. More
formally, we would like to detect the minimal split given CT}"?.

The minimal split can be found by inducing code tables on consecutive heads
of the stream until a split is encountered. We would rather avoid building a code
table for each and every consecutive head, but luckily we can speed things up
in two different ways. First of all, change does not come in a single transaction,
so again we iterate over blocks instead. Secondly, we can skip each block that
obviously belongs to CT}"*?.

For this second optimisation, we apply a statistical test that tests whether
the encoded size of the current block deviates from the expected size. If it
does not, discard it and skip to the next block. Before discarding the head of

98

5.4. The Algorithm

a converged code table, this data is used to randomly sample encoded block
sizes. Both the lower and upper leaveOut percent samples are removed. If the
encoded size of a new block falls within the range of the remaining samples,
the block is considered to belong to the distribution of CT{* and skipped.

For each block that is not skipped, we have to test whether it marks a split
or not. For this, we have to induce a code table CT,*’. To be able to reject
a code table that is only just better than the previous one, we introduce the
Code Table Difference:

Definition 13. Given a code table CT{™" and a code table CTy"" induced on
H(S3), the Code Table Difference CT'D is given by

L(H(Ss),CT{"") — L(H(S2),CTy™™)
L(H(S,), CTy??) ’

Normalised the same way as the Improvement Rate, the CT D tells us how
many percent CTy"* compresses the new head better than CT;*?. We can now
define a minimum CT'D in the overall algorithm, which is presented next.

StreamKrimp

Putting together the algorithms of the previous subsections, we are able to par-
tition a stream into consecutive substreams with minimal splits. The complete
algorithm is shown in Algorithm 8.

It starts with finding the code table on the head of the stream (line 2) and
then iterates over the rest of the stream. Each iteration starts with skipping
as many blocks as possible (5). When a block cannot be skipped straightaway,
it is used as starting position for a new candidate code table (6). The Code
Table Difference of this candidate to the current code table is computed (7)
and the code table is either accepted (8-10) or rejected (12). When finished,
the complete set of code tables is returned (13). Naturally, these could be
inspected and used while the algorithm is still running as well.

How Large is Zero?

Or: How should we set our parameters? We will here motivate the default
values we suggest for the algorithm, which we will use throughout the rest of
the chapter.

minsup Lower minsup levels result in more candidate patterns and therefore
better compression and better quality code tables. Sensitivity of the
change detection scheme is influenced through this parameter: lower val-
ues result in a higher sensitivity. To avoid overfitting on very small data

99

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

Algorithm 8 STREAMKRIMP
STREAMKRIMP (S, minsup, blockSize, mazxIR, leaveOut, minCTD) :

1. 1«1

2. CTS; — FINDCODETABLEONSTREAM(S, 0, blockSize, minsup, mazIR)
3. pos «— CTS;.endPos

4. while pos < sizeof(S) do

5. pos «— SkipBlocks(S, CT'S;, pos, blockSize, leaveOut)

6. candCT — FINDCTONSTREAM(S, pos, blockSize, minsup, maxIR)
7. if CTD(S, CT's;, candCT) >= minCTD then

8. t—1+1

9. CTS; < candCT
10. pos «— candC'T.endPos
11. else
12. pos «— blockSize
13. end if
14. end while
15. return CTS

segments, we use a minsup of 20 in the experiments presented in this
chapter.

blockSize The resolution at which STREAMKRIMP works should always be
high enough. This will be the case if we choose the size of a block such
that, on average, every possible item occurs once in every block. There-
fore, we choose blockSize to be equal to |Z].

leaveOut Set to 0.01: both the lower 1% and the upper 1% of the randomly
sampled blocksizes are discarded by SkipBlocks.

maxIR Set to 0.02: if a new code table compresses less than 2% better than
its predecessor, we decide it has converged.

minCTD Set to 0.10: a new code table is accepted only if it compresses at
least 10% better than the previous code table.

The choices for mazIR and minCTD may seem arbitrary, but this is not
the case. They are actually comparable to the dissimilarity values we reported
before (see Chapter 3). Dissimilarity values between random samples from a
single dataset range from 0.045 to 0.177 on UCI datasets (also reported on in
the next section).

100

5.5. Experiments

Table 5.1: Properties of 7 UCI datasets.

Dataset D] IC] 7]
Adult 48842 2 97
Chess (kr—k) 28056 18 58
Led7 3200 10 24
Letter recognition 20000 26 102
Mushroom 8124 2 119
Nursery 12960 5 32
Pen digits 10992 10 86

For each dataset, given are the number of transactions, classes and
items.

Therefore, 0.02 and 0.10 are very conservative and may be considered zero
for all practical purposes: with these thresholds, code tables converge and
significant changes are detected.

5.5 Experiments

Artificial Streams — UCI Datasets

The first series of experiments is done on a selection of the largest datasets from
the well-known UCI repository [32], as shown in Table 5.1. These datasets are
transaction databases and not streams, but they have the advantage that each
of them consists of multiple known classes. This allows for easy validation of
the identified splits.

To transform a UCI dataset into a stream, each dataset is split on class
label and the class labels are removed from all transactions. This results in
a transaction database per class. The transactions within each database are
ordered (randomly) to form a stream. The resulting streams are concatenated
into one single stream (in random order). Because of this randomisation, each
dataset is turned into a stream 10 times.

The main results are summarised in Table 5.2. If we compare the number
of code tables found to the actual number of classes in Table 5.1, we see that
STREAMKRIMP finds the right number of distributions in the stream. Only for
Chess, the algorithm doesn’t find enough splits, but this is not surprising as
there are quite many classes and some of them are rather small. Analysing the
splits reveals that indeed the larger classes are identified and only the smallest
ones go undetected.

101

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

Table 5.2: Results for 7 UCI datasets.

Blocks #CTs Blocks Purity
Dataset |CTS| per CT rejected skipped Base Actual
Adult 3.4 4.7 118 367 76.1% 99.7%
Chess (kr-k) 13 4.2 165 264 17.8% 80.1%
Led7 12 3.9 3.5 82 10.9% 95.2%
Letter recognition 27 5.9 0.2 32 41% 80.1%
Mushroom? 2.7 6.2 6.2 44 51.7% 96.5%
Nursery 6.2 5.7 140 228 33.3% 98.5%
Pen digits 15 6.0 2.3 34 10.4% 87.2%

For each dataset, the following is listed: the number of code tables
found, the average number of blocks used for construction per CT, the
number of code tables rejected, the number of blocks skipped and finally
base and obtained purity. Averages over 10 randomisations (class order,
transaction order within classes).

The next column tells us that approximately 4 to 6 blocks are enough for
code table construction on these datasets. For some datasets, such as Adult,
Chess and Nursery, quite some code tables are rejected, as is shown under
‘#CTs rejected’. However, also quite some blocks are skipped by SkipBlocks.
These values vary quite a bit for the different datasets, telling us that the
conservative statistical skip test seems to work better for one dataset than for
another.

The last columns show baseline and obtained purity values. Purity is the
size of the majority class relative to the entire segment, averaged over all iden-
tified segments. Baseline purity is the size of the largest class. Although the
transactions of the classes are not interleaved and the task is therefore easier
than clustering, the attained purity values are very high. This indicates that
the algorithm correctly identifies the boundaries of the classes in the streams.
This is supported by Figure 5.1, which depicts actual and found splits for three
datasets. No expected splits are missed by STREAMKRIMP and the shift mo-
ments are accurately detected. (For each dataset, a single run with average
performance is shown.)

Artificial Streams — Synthetic

The experiments in the previous subsection show that the proposed algorithm
accurately detects changes in a stream. The objective of the following experi-

102

5.5. Experiments

Adult
Mushroom

Nursery

”’ ” ’ = found split

Figure 5.1: Actual and found (marked with arrows) splits for three datasets.

ments is simple: which elementary distribution changes are detected?

We manually create simple code tables and use the KrRIMP data generator
(see Chapter 4) to generate a series of synthetic datasets. Each generated
stream consists of two parts: 5000 rows generated with one code table, followed
by 5000 rows generated by a variation on this code table. In these experiments,
|Z| is 10 and each item is in the code table with a count of 1 (i.e. all individual
items are generated with equal probability). The databases have 5 two-valued
attributes (resulting in a total of 10 possible items). So, each transaction
consists of 5 items.

Because the number of different items is very small (only 10) we manu-
ally set the blockSize for these experiments to 200. This way, we ensure that
KRIMP gets enough data and candidate patterns to learn the structure that is
in the data.

The basic distribution changes made halfway in the synthetic datasets
(through changing the code tables) are depicted in Figure 5.2. Each rounded
box represents an itemset, with the individual items given as numbers. All
usage counts are set to 5, except for those itemsets where a multiplier is shown
(x4 means 5 x 4 = 20). As data generation is a stochastic process, 10 streams
were generated for each change and the main results shown in Table 5.3 are
averaged over these.

The last column indicates the number of times the algorithm found the
optimal solution; two code tables and 100% purity (i.e. a split after 5000 rows).
From the results it is clear that STREAMKRIMP is very capable at detecting 4

103

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

Add pattern Remove pattern

@ @
CH CoH @
(68) (68)

Combine patterns Split pattern

— (024)x (024)x2—-»(02)

Change pattern Change usage
@ @__ @D«
G @

—

NI ©
N LS

Figure 5.2: Changes inflicted in the code tables used for stream generation.

Table 5.3: Results for 6 synthetic streams.

Change |CTS| #CTs rejected Purity | Optimal]
Add pattern 1.0 1.8 79.8 0
Remove pattern 1.3 3.8 97.0 6
Combine patterns 1.3 2.8 98.6 6
Split pattern 1.1 2.6 98.8 8
Change pattern 1.1 1.8 98.6 7
Change usage 1.9 15.6 75.2 1

For each dataset, the following is listed: the number of code tables
found, the number of code tables rejected, obtained purity and the
number of optimal solutions found. Averages over 10 generated streams
(except for the last column).

104

5.5. Experiments

020 4
200 \

o
&

Avg transaction size (bits)
I
3
Improvement Rate
o
3
—

=
3
o
=
&

50

L s e e e AU B e 0.00 T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Blocks Blocks

Figure 5.3: Average encoded length per transaction (left) and improvement
rates (right) for the code tables built on 15 consecutive blocks from the Acci-
dents dataset.

out of 6 of the tested types of change. Only detection of the subtle addition
of a single (small) pattern and changing the frequency of an existing pattern
turns out to be difficult occasionally. In these cases, change is often detected
but this takes some blocks, resulting in lower purity values.

A Real Stream - Accidents Dataset

A more realistic dataset is taken from Geurts et al. [43]. It contains data ob-
tained from the National Institute of Statistics (NIS) for the region of Flanders
(Belgium) for the period 1991-2000. More specifically, the data are obtained
from the Belgian ‘Analysis Form for Traffic Accidents’ that should be filled out
by a police officer for each traffic accident that occurs with injured or deadly
wounded casualties on a public road in Belgium. In total, 340,184 traffic acci-
dent records are included in the data set.

No timestamps are available, but accidents are ordered on time and it is
an interesting question whether structural changes can be detected. With over
340,000 transactions over a large number of items (|Z| = 468), running any
regular pattern mining algorithm on the entire dataset is a challenge. Therefore,
it is a perfect target for finding ‘good enough’ code tables and detecting change.
As KriMP candidates we use closed frequent itemsets with minimum support
500 and we rounded the block size to 500.

An important question we have not yet addressed with the (much smaller)
artificial streams is how well the FINDCODETABLEONSTREAM algorithm ap-
proximates the best possible code table on a stream. To assess this, the aver-

105

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

age encoded size per transaction is plotted for a series of code tables in Fig-
ure 5.3 on the left. On the right, Figure 5.3 shows the computed Improvement
Rates for the same set of code tables. Each code table is built on a head of
x blocks, where z is the number of blocks indicated on the x-axis. Average
encoded size is computed on all transactions the code table is induced from.
The graphs clearly show that the most gain in compression is obtained in the
first few blocks. After that, the average size per transaction decreases only
slowly and this is also reflected in the Improvement Rate. With mazIR set to
0.02, STREAMKRIMP would pick the code table built on 8 blocks, which seems
a good choice: after that, improvement is marginal.

Running STREAMKRIMP on the entire dataset resulted in only 14 code
tables that characterise the entire stream of over 340,000 transactions. 140
blocks were skipped, 429 code tables were built but rejected. On average,
7.43 blocks of data were required for a code table to converge and the average
Code Table Difference of accepted code tables was 0.14. This means that each
consecutive distribution differs about 14% from its predecessor in terms of
compression!

To further illustrate the differences between the identified substreams, Fig-
ure 5.4 shows compressed block sizes over the entire dataset for three consec-
utive code tables. Substreams clearly consist of blocks that are equally well
compressed. The split marking the end of the last substream shown seems to
be a tad late, the rest is spot on. In other words, the change detection is both
quick and accurate, also on large datasets.

5.6 Related Work

Stream mining has attracted a lot of attention lately, which is nicely illustrated
by the recent book by Aggarwal et al. [3]. Here, we focus on change detection.

In many cases, streams are considered to be sequences of single (real-valued)
numbers or items. Kifer et al. [59] use two sliding windows to obtain two sam-
ples of which it is statistically determined whether they belong to different dis-
tributions. Papadimitriou et al. [90] use autoregressive modelling and wavelets,
Muthukrishnan et al. [88] avoid a fixed window size by introducing a method
based on sequential hypothesis testing.

A second class of stream mining algorithms considers multi-dimensional,
real-valued streams. Aggarwal et al. [1] visualise evolving streams using ve-
locity density estimation. The visualisation is inherently 2-dimensional and
it is not possible to accurately estimate densities with increasing dimension-
ality. Aggarwal et al. [2] use a polynomial regression technique to compute
statistically expected values.

Dasu et al. [36] take an information-theoretic approach by using the Kullback-

106

5.6. Related Work

170
1501 CT,
1104

T 170

3

.

N 150 CTg

wv

°

3

S 1304

v

[

w
110-

170

150 CTy
130

110 T T T

0 200 400 600
Block

Figure 5.4: Encoded length per block for three consecutive substreams on
Accidents. The blocks belonging to each of the code tables are indicated with
the coloured blocks.

Leibler distance to measure the difference between distributions. They exper-
iment on multi-dimensional real-valued data, but claim the method can also
be applied to categorical data. However, a fixed window size strongly influ-
ences the changes that can be detected and the method seems better suited for
relatively few dimensions (< 10).

Widmer & Kubat [118] use an adaptive window size to do online learning
in domains with concept drift. Predictive accuracy is used to detect drift and
adjust the window size heuristically. This does require (known) binary class
labels though.

The final class of algorithms considers streams of categorical transactions,
as we do in this chapter. Chen et al. [29] propose a method to visualise changes

107

5. STREAMKRIMP — DETECTING CHANGE IN DATA STREAMS

in the clustering structure of such streams. A disadvantage is that snapshots
of these visualisations have to be manually analysed. More recently, Calders
et al. [23] proposed an alternative ‘minimum support’ measure for patterns in
streams called maz-frequency. This measure uses flexible windows to maintain
the max-frequency on patterns in the stream.

5.7 Discussion

The results on both the artificial and realistic streams show that STREAMKRIMP
is very capable at detecting changes in large data streams. No actual splits are
missed and the results on the synthetic streams show that even small modifi-
cations in the distribution can be detected.

The algorithm satisfies the general requirements for stream mining, as only
very limited data storage is required and online mining is possible. Also, the
resulting code tables are much smaller than the data itself and can therefore
be stored for a much longer time. This means that it is possible to store a full
characterisation of the entire stream.

In many stream mining algorithms, a window size has to be defined. This
window size determines what changes can and can not be found; nothing out-
side the window is seen. Contrary, the block size of our algorithm is only the
resolution which determines how quickly a distribution is detected and charac-
terised.

5.8 Conclusions

We introduce STREAMKRIMP, an algorithm that detects changes in the sam-
pling distribution of a stream of transactions. Based on an analysis from MDL
perspective, it partitions a stream into a sequence of substreams. For each
substream, it uses KRIMP to characterise its distribution with a code table and
each subsequent code table indicates a change in the underlying distribution.
Only a very limited amount of data storage is required and STREAMKRIMP fa-
cilitates online mining of streams.

The results of experiments on both artificial and realistic streams show that
STREAMKRIMP detects the changes that make a difference, no relevant changes
are missed and noise is neglected. Finally, large streams with many attributes
pose no problems.

108

Chapter 6

Identifying the Components

Most, if not all, databases are mixtures of samples from different distributions®.
Transactional data is no exception. For the prototypical example, supermar-
ket basket analysis, one also expects a mixture of different buying patterns.
Households of retired people buy different collections of items than households
with young children.

Models that take such underlying distributions into account are in general
superior to those that do not. In this chapter we introduce two MDL-based
algorithms that follow orthogonal approaches to identify the components in
a transaction database. The first follows a model-based approach, while the
second is data-driven. Both are parameter-free: the number of components
and the components themselves are chosen such that the combined complexity
of data and models is minimised. Further, neither prior knowledge on the
distributions nor a distance metric on the data is required. Experiments with
both methods show that highly characteristic components are identified.

!This chapter has been published as [71]: M. van Leeuwen, J. Vreeken & A. Siebes.
Identifying the Components. In Data Mining and Knowledge Discovery 19(2), Springer.
ECML PKDD’09 special issue, Best Student Paper.

109

6. IDENTIFYING THE COMPONENTS

6.1 Introduction

Most, if not all, databases are mixtures of samples from different distributions.
In many cases, nothing is known about the source components of these mixtures
and therefore many methods that induce models regard a database as sampled
from a single data distribution. While this greatly simplifies matters, it has
the disadvantage that it results in suboptimal models.

Models that do take into account that databases actually are sampled from
mixtures of distributions are often superior to those that do not, independent
of whether this is modelled explicitly or implicitly. A well-known example of
explicit modelling is mixture modelling [108]. This statistical approach models
data by finding combinations of several well-known distributions (e.g. Gaussian
or Bernoulli) that are assumed to underlie the data.

Boosting algorithms [41] are a good example of implicit modelling of mul-
tiple underlying distributions. The principle is that a set of weak learners can
together form a single strong learner. Each learner can adapt to a specific part
of the data, implicitly allowing for modelling of multiple distributions.

Transaction databases are no different with regard to data distribution. As
an illustrative example, consider supermarket basket analysis. One also expects
a mixture of different buying patterns: different groups of people buy different
collections of items, although overlap may exist. By extracting both the groups
of people and their corresponding buying patterns, a company can learn a lot
about its customers.

Part of this problem is addressed by clustering algorithms, as these group
data points together, often based on some distance metric. However, since
we do not know upfront what distinguishes the different groups, it is hard to
define the appropriate distance metric. Furthermore, clustering algorithms such
as k-means [79] only find the groups of people and do not give any insight in
their corresponding buying behaviours. The only exception is bi-clustering [92],
however this approach imposes strong restrictions on the possible clusters.

Frequent itemset mining, on the other hand, does give insight into what
items customers tend to buy together, e.g. the (in)famous Beer and Nappies
example. But, not all customers tend to buy Nappies with their Beer and
standard frequent set mining does not distinguish groups of people. Clearly,
knowing several groups that collectively form the client base as well as their
buying patterns would provide more insight. So, the question is: can we find
these groups and their buying behaviour? That is, we want to partition the
database D in sub-databases Dy, - - - , Dy such that

— the buying behaviour of each D; is different from all D; (with j # ¢), and

— each D; itself is homogeneous with regard to buying behaviour.

110

6.2. Problem Statement

But, what does ‘different buying behaviour’ mean? It certainly does not
mean that the different groups should buy completely different sets of items.
Also, it does not mean that these groups cannot have common frequent item-
sets. Rather, it means that the characteristics of the sampled distributions are
different. This may seem like a play of words, but it is not. Sampled distri-
butions of transaction data can be characterised precisely through the use of
code tables.

We use KRIMP code tables and MDL to formalise our problem statement.
That is: find a partitioning of the database such that the total compressed
size of the components is minimised. This problem statement agrees with the
compression perspective on data mining as recently positioned by Faloutsos et
al. [40].

We propose two orthogonal methods to solve the problem at hand. The first
method is based on the assumption that KRIMP implicitly models all underlying
distributions in a single code table. If this is the case, it should be possible to
extract these and model them explicitly. We propose an algorithm to this end
that optimises the compressed total size by specialising copies of the original
compressor to the different partial distributions of the data.

Throughout our research we observed that by partitioning a database, e.g.
on class label, compressors are obtained that encode transactions from their
‘native’ distribution shortest. This observation suggests an iterative algorithm
that resembles k-means: without any prior knowledge, randomly split the data
in a fixed number of parts, induce a compressor for each and re-assign each
transaction to the compressor that encodes it shortest, etcetera. This scheme
is very generic and could also be easily used with other types of data and
compressors. Here, as we are concerned with transaction data, we employ
KRIMP as compressor.

Both algorithms are implemented and evaluated on the basis of total com-
pressed sizes and component purity, but we also look at (dis)similarities be-
tween the components and the code tables. The results show that both our
orthogonal methods identify the components of the database, without param-
eters: the optimal number of components is determined by MDL. Visual in-
spection confirms that characteristic decompositions are identified.

6.2 Problem Statement

Our goal is to discover an optimal partitioning of the database; optimal, in the
sense that the characteristics of the different components are different, while
the individual components are homogeneous.

As discussed in previous chapters, code tables characterise the sampled
distributions of the data. Hence, we want a partitioning for which the different

111

6. IDENTIFYING THE COMPONENTS

components have different characteristics, and thus code tables. In terms of
MDL, this is stated as follows.

Problem 5 (Identifying Database Components). Let Z be a set of items and
let D be a bag of transactions over Z. Find a partitioning D1, -+ , Dy of D and
a set of associated code tables C'Ty,--- ,CTy, such that the total compressed
size of D,

> L(CT, Dy,

ie{l, k}
18 minimised.

There are a few things one should note about this statement. First, we
let MDL determine the optimal number of components for us, by picking the
smallest encoded size over every possible partitioning and all possible code
tables. Note that this also ensures that we will not end up with two components
that have the same or highly similar code tables. It would be far cheaper to
combine these.

Secondly, asking for both the database partitioning and the code tables is
in a sense redundant. For any partitioning, the best associated code tables are,
of course, the optimal code tables. The other way around, given a set of code
tables, a database partitions naturally. Each transaction goes to the code table
that compresses it best. This suggests two ways to design an algorithm to solve
the problem. Either one tries to find an optimal partitioning or one tries to
find an optimal set of code tables.

Thirdly, the size of the search space is gigantic. The number of possible
partitions of a set of n elements is the well-known Bell number B,, [98]. Simi-
larly, the number of possible code tables is enormous. It consists of the set of
all sets of subsets of that contain at least the singletons. Further, for each of
these code tables we would have to consider all possible combinations of covers
per transaction. Moreover, there is no structure in this search space that we
can use to prune. Hence, we will have to introduce heuristic algorithms to solve
our problem.

6.3 Datasets

We use a number of UCT datasets [32], the Retail dataset [20] and the Mammals
dataset [51]2 for experimental validation of our methods. The latter consists
of presence/absence records of 121 European mammals in geographical areas
of 50 x 50 kilometres. The properties of these datasets are listed in Table 6.1.

2The full dataset [86] is available for research purposes from the Societas Europaea Mam-
malogica, http://www.european-mammals.org

112

6.4. Model-Driven Component Identification

Table 6.1: Basic statistics and KRIMP statistics of the datasets used in the
experiments.

Basic Statistics KRiMP
Dataset |D| |Z| |C| Pur Cand ms L(CT,D) DS
Adult 48842 95 2 76.1 Cls 20 841604 0.8
Anneal 898 65 6 76.2 All 1 21559 6.3
Chess (krfk) 28056 40 18 16.2 All 10 516623 1.3
Mammals 2183 121 - - Cls 150 164912 -
Mushroom 8124 117 2 b1.8 Cls 1 272600 8.4
Nursery 12960 21 2 333 Cls 1 240537 4.2
Page blocks 5473 33 11 898 All 1 7160 10.6
Retail 88162 16470 - - All 16 10101135 -

Statistics on the datasets used in the experiments. As basic statistics,
provided are the number of transactions, number of items, number of
classes and purity (the accuracy by majority class voting). KRIMP-
specific are the candidates used (all or closed frequent itemsets), the
minsup at which the candidates are mined, the total compressed size
in bits and the average code table dissimilarity between the classes.

For fair comparison between the found components and the original classes,
the class labels are removed from the databases in our experiments. In ad-
dition, KRIMP candidates (all or closed frequent itemsets up to minsup), the
regular (single-component) KRIMP compressed size of the database and class
dissimilarities are given. Average class dissimilarities are computed by splitting
the database on class label, computing pair-wise code table dissimilarities as
defined above and taking the average over these. The Retail and Mammals
datasets do not contain class labels.

6.4 Model-Driven Component Identification

In this section we present an algorithm that identifies components by finding
an optimal set of code tables.

113

6. IDENTIFYING THE COMPONENTS

Mbotivation

A code table induced for a complete database captures the entire distribution,
so the multiple underlying component distributions are modelled implicitly.
This suggests that we should be able to extract code tables for specific com-
ponents from the code table induced on the whole database, the original code
table.

If the data in a database is a mixture of several underlying data distri-
butions, the original code table can be regarded as a mixture of code tables.
This implies that all patterns required for the components are in the code table
and we only need to ‘extract’ the individual components. In this context, each
possible subset of the original code table is a candidate component and thus
each set of subsets a possible decomposition. So, given an original code table
CT induced for a database D, the optimal model driven decomposition is the
set of subsets of C'T" that minimises the total encoded size of D.

Obviously, the optimal decomposition could be found by simply trying all
possible decompositions. However, although code tables consist of only few
patterns (typically hundreds), the search space for such approach is enormous.
Allowing only partitions of the code table would strongly reduce the size of
the search space. But, as different distributions may have overlapping common
elements, this is not a good idea. The solution is therefore to apply a heuristic.

Algorithm

The algorithm, presented in detail in pseudo code in Algorithm 9, works as
follows: first, obtain the overall code table by applying KRIMP to the entire
database (line 1). Then, for all possible values of k, i.e. [1,|D|], identify the
best k components. We return the solution that minimises the total encoded
size (2-3).

To identify k components, start with & copies of the original code table (5).
A Laplace correction of 1 is applied to each copy, meaning that the usages of all
itemsets in the code table are increased by one. This correction ensures that
each code table can encode any transaction, as no itemsets with zero usage
(and therefore no code) can occur. Now, iteratively eliminate that code table
element that reduces the total compressed size most; until compression cannot
be improved any further (6-8). Iteratively, each element in each code table
is temporarily removed to determine the best possible elimination (10). To
compute the total compressed size, each transaction is assigned to that code
table that compresses it best (12). This can be translated as being the Bayes
optimal choice (see Section 2.5). After this, re-compute optimal code lengths
for each component (usages may have changed) and compute the total encoded
size by summing the sizes of the individual components (13-14).

114

6.4. Model-Driven Component Identification

Algorithm 9 Model-Driven Component Identification
IDENTIFY THECOMPONENTSBYMODEL(D, minsup) :

1. CT,rig +— KRIMP(D, MineFreqSets(D, minsup))

2. b — argmin CALCENCSIZE(IDKCOMPONENTSBYMODEL(D, CT,yi4, k))
ke[L,| D)
3. return IDENTIFYKCOMPONENTSBYMODEL(D, CT,4, b)

IDKCOMPONENTSBYMODEL(D, CTpyig, k) :
C « { k Laplace corrected copies of CT,q }
do e «— FINDBESTELIMINATION(D, C, k)
C «— ApplyElimination(C, e)
while compressed size decreases
return C'

© ® N oo

FINDBESTELIMINATION(D, C, k) :

10. (Cp, B) «— argmin CALCENCSIZE(D, (C'\ C;) U (C; \ X), k)
C;eC,XeC;
11. return (Cy, B)

CALCENCSIZE(D, C, k) :
12. for each transaction t € D : assign t to C'T; € C that gives shortest code

13. for each CT; € C : ComputeOptimalCodes(D;, CT;)
14. return) . L(C;, D;)

Experimental Results

The results of the experiments with the algorithm just described are sum-
marised in Table 6.2. By running IDENTIFYTHECOMPONENTSBYMODEL for
all values of k and choosing the smallest decomposition, MDL identifies the
optimal number of components. However, the search space this algorithm con-
siders grows enormously for large values of k, so in our experiments we imposed
a maximum value for k.

The compression gain is the reduction in compressed size relative to that
attained by the original code table; the regular KRIMP compressed size as given
in Table 6.1. The compression gains in Table 6.2 show that the algorithm ably
finds decompositions that allow for a much better compression than when the
data is considered as a single component. By partitioning the data, reductions
from 9% up to 46% are obtained. In other words, for all datasets compression
improves by using multiple components.

We define purity as the weighted sum of individual component purities,
a measure commonly used in clustering. Hence, the baseline purity is the
percentage of transactions belonging to the majority class. If we look at the

115

6. IDENTIFYING THE COMPONENTS

Table 6.2: Experimental results for Model-Driven Component Identification

Model-Driven Component Identification

Dataset Gain L% Comp.Purity (%) Avg DS Optk Maxk
Adult 8.7 76.1 6.44 2 2
Anneal 18.1 80.8 5.96 19 30
Chess (kr—k) 14.5 18.2 2.86 6 7
Mushroom 25.7 88.2 11.32 12 15
Nursery 11.7 45.0 1.77 14 20
Page blocks 46.4 91.5 804.9 6 40

Experimental results for Model-Driven Component Identification.
Given are the gain in compression over the single component
KRIMP compression, component purity by majority class voting, av-
erage dissimilarity between the components, the optimal value of k£ and
the maximum value of k.

obtained purities listed in Table 6.2 and compare these to the baseline values
in Table 6.1, we notice that these values range from baseline to very good.
Especially the classes of the Mushroom and Page blocks datasets get separated
well. The average (pairwise) dissimilarity between the Optimal k& components,
Awvg DS, shows how much the components differ from each other. We obtain
average dissimilarities ranging from 1.7 to 804.9, which are huge considering the
values measured between the actual classes (as given in Table 6.1). Without
any prior knowledge the algorithm identifies components that are at least as
different as the actual classes. While for the Adult database the obtained purity
is at baseline, the data is very well partitioned: the dissimilarity between the
components measures 6.4, opposed to just 0.8 between the actual classes.

Arguably, the most important part of the results is the code tables that
form the end product of the algorithm: these provide the characterisation of
the components. Inspection of these provides two main observations. First,
a number of the original elements occur in multiple components, others occur
only in a single component and some lost their use. Secondly, the code lengths
of the elements are adapted to the specific components: codes become shorter,
but lengths also change relative to each other. Example original and resulting
code tables are depicted in Figure 6.1.

116

6.4. Model-Driven Component Identification

T

orig

(8}
-

N

—
~

1

Codes

1

#t t1# it 1

Figure 6.1: The components of Anneal. Codes and their lengths (in bits,
represented by width) for original and component code tables, k = 2. Common
elements are marked by arrows.

117

6. IDENTIFYING THE COMPONENTS

Discussion

The significantly smaller total encoded sizes after decomposition show that
the proposed algorithm extracts different underlying distributions from the
mixture. The purities and component dissimilarities show that components
are different from each other but homogeneous within themselves.

One of the properties of the method is that the number of (unique) patterns
required to define the components is never higher than the number of itemsets
in the original code table, which consists of only few patterns. As the total
number of patterns actually used in defining the components is often even
smaller, the resulting code tables can realistically be manually inspected and
interpreted by domain experts.

The runtimes for the reported experiments ranged from a few minutes for
Anneal up to 80 hours for Adult. Obviously, more computation time is needed
for very dense and/or very large databases, which is why in this section no
results are presented for Retail and Mammals. While parallelisation of the
algorithm is trivial and should provide a significant speedup, there is another
approach to handle large datasets: the data driven method presented in the
next section is inherently much faster.

6.5 Data-Driven Component Identification

In this section, we present an approach to identify the components of a dataset
by finding the MDL-optimal partitioning of the data.

Motivation

Suppose we have two equally sized databases, D; and D3, both drawn from
a mixture of distributions D4 and Dpg. Further, suppose that D; has more
transactions from D4 than from Dp and vice versa for Dy. Now, we induce
compressors C7 and Cy for Dy and D, respectively. Assuming that D4 and
Dp are different, C; will encode transactions from distribution D4 shorter
than Cy, as C7 has seen more samples from this distribution than C5. This
bias will be stronger if more transactions come from a single distribution - and
the strongest when the data consists solely of transactions from one distribu-
tion. So, provided a particular source distribution has more transactions in
one database than in another, transactions of that distribution will be encoded
shorter by a compressor induced on that data.

We can exploit this property to find the components of a database. Given
a partitioning of the data, we can induce a code table for each part. Now, we
simply reassign each transaction to that part whose corresponding code table
encodes it shortest. We thus re-employ the Bayes optimal choice to group

118

6.5. Data-Driven Component Identification

Algorithm 10 Data-Driven Component Identification
IDENTIFY THECOMPONENTSBYDATA (D, minsup)

1. for k=2 to |D| : r; « IDENTIFYKCOMPONENTSBYDATA(D, k, minsup)

2. best «+ argmin CALCENCSIZE(D, 1, k)
ke[L,|Dl)
3. return rp.s

IDENTIFYKCOMPONENTSBYDATA(D, k, minsup)

4. parts « Partition(RandomizeOrder (D), k)

5. do

6. for each p; € parts :

7. CT; — Krimp(p;,MineFreqSets(p;, minsup))

8. for each X € CT; : usagep(X) «— usagep(X)+1

9. end for

10. for each transaction t € D : assign t to C'T; that gives the shortest code
11. while transactions were swapped

12. return parts

those transactions that belong to similar distribution(s) (see Section 2.5). By
doing this iteratively until all transactions remain in the same part, we can
identify the components of the database. This method can be seen as a form
of k-means; without the need for a distance metric and providing insight in the
characteristics of the found groupings through the code tables.

Algorithm

From the previous subsection it is clear what the algorithm will look like, but its
initialisation remains an open question. Without prior background knowledge,
we start with a random initial partitioning. Because of this, it is required
to do a series of runs for each experiment and let MDL pick the best result.
However, as transactions are reassigned to better fitting components already
in the first iteration, it is expected that the algorithm will be robust despite
this initial non-deterministic step. The algorithm is presented in pseudo-code
as Algorithm 10.

Experiments

Each experiment was repeated 10 times, each run randomly initialised. The
different runs resulted in almost the same output, indicating that random ini-
tialisation does not harm robustness. In Table 6.3 we report the main results of

119

6. IDENTIFYING THE COMPONENTS

Table 6.3: Experimental results for Data-Driven Component Identification

Data-Driven Component Identification

Dataset Gain L% Comp.Purity (%) Average DS Optimal k
Adult 40.3 82.2 31.7 177
Anneal 4.8 76.2 3.7 2
Chess (kr-k) 18.2 17.8 2.9 13
Mammals 46.2 - 1.7 6
Mushroom 14.7 75.6 7.8 20
Nursery 15.0 43.4 3.6 8
Page blocks 70.3 92.5 19.6 30
Retail 25.5 - 0.10 2

Experimental results for Data-Driven Component Identification. Per
database, the gain in compression over regular KRIMP compression,
component purity by majority class voting, average dissimilarity be-
tween the components and the optimal value of k are shown.

these experiments. The reported results are those of the run with the shortest
global encoded length.

For all datasets decompositions are found that allow for much better com-
pression of the whole. The gains show that very homogeneous blocks of data
are identified; otherwise the total encodings would only have become longer, as
many code tables have to be included instead of one. The components identified
in the Adult, Mammals and Page blocks datasets are so specific that between
40% and 70% fewer bits are required than when the data is compressed as a
single block.

In between, however, the components are very heterogeneous. This is shown
by the average dissimilarity measurements. For example, the 19.6 measured for
Page blocks means that on average 1960% more bits would be required for a
random transaction, if it were encoded by a ‘wrong’ component. Also for the
other datasets partitions are created that are at least as different as the original
classes (see Table 6.1). Further, the component purities are in the same league
as those of the model driven algorithm.

The geographic Mammals dataset allows us to meaningfully visually inspect
the found components. Figure 6.2 shows the best found decomposition. Each
of the rows (i.e. each grid location of 50 x 50 kilometres) has been assigned to
one of the six components based on its items (i.e. the mammals that have been
recorded at that location). This is a typical example where normally ad-hoc

120

6.5. Data-Driven Component Identification

Figure 6.2: The components of Mammals (k = 6, optimal).

solutions are used [51] as it is difficult to define a meaningful distance measure.
Our method only regards the characteristics of the components, the patterns
in which the items occur. As can be seen in Figure 6.2, this results in clear
continuous and geographically sound groupings - even though the algorithm
was completely uninformed in this regard. For example, the yellow, orange
and green components cover respectively the ‘polar’ region, highlands and more
temperate areas of Europe.

Discussion

Much shorter data descriptions and high dissimilarities found show that highly
specific database components are identified: internally homogeneous and het-

121

6. IDENTIFYING THE COMPONENTS

erogeneous in between. Moreover, the improvements in purity over the baseline
show that many components have a strong relation to a particular class. Al-
though mainly a property of the data, the optimal number of components we
identify is low, which enables experts to interpret the components by hand.

By definition, each randomly initialised run of the algorithm may result in
a different outcome. In all our experiments, however, we found the outcomes
to be stable - indicating the robustness of a data compression approach. Nev-
ertheless, to ensure that one finds a very good solution a couple of runs are
required. However, as only partitions of the data have to be compressed, the
algorithm runs very fast (a run typically takes seconds to minutes) so this poses
no practical problems. For example, for the largest dataset, Retail, it took only
six hours in total to run ten independent runs over all k.

6.6 Discussion

The components of a database can be identified using both model and data
driven compression approaches. The experimental results show that both meth-
ods return characteristic partitions with much shorter total encoded size than
regular single-component KRIMP compression. The distributions of the com-
ponents are shown to be very different from each other using dissimilarity
measurements. These dissimilarities show that the code tables, and thus the
patterns present in the data, are very unalike - i.e. the characteristics of the
data components are different.

The optimal number of components is determined automatically by MDL
by either method: no parameter k& has to be set by hand. Each of the two
proposed component identification methods has its own merit and depending
on the data and computational power available one may choose for either the
data or model driven algorithm. When dealing with (very) large databases,
the data driven method is bound to provide good results quickly. For analysis
of reasonable amounts of data the model driven method has the advantage of
characterising the components very well with only modest numbers of patterns.
Although we here focus on transaction data and the KRIMP encoding, note that
without much effort the framework can be generalised to a generic solution
based on MDL: given a data type and suited encoding scheme, components
can be identified by minimising the total compressed size. Especially the data
driven algorithm is very generic and can be easily applied to other data types
or adapted to use different compressors. This is trivial if a compressor can
encode single transactions, otherwise one should assign each transaction to the
component of which the encoded size of transaction and component is minimal.
The model driven algorithm is more specific to our code table approach, but
can also be translated to other data types.

122

6.7. Related Work

6.7 Related Work

Clustering is clearly related to our work, as it addresses part of the problem
we consider. The best-known clustering algorithm is k-means [79], to which
our data driven component identifier is related as both iteratively reassign
data points to the currently closest component. For this, k-means requires
a distance metric, but it is often hard to define one as this requires prior
knowledge on what distinguishes the different components. Our method does
not require any a priori knowledge. In addition, clustering only aims at finding
components, while here we simultaneously model these partitions explicitly
with small pattern sets.

Local frequency of items has been used by Wang et al. [116] to form clusters,
avoiding pair-wise comparisons but ignoring higher order statistics. Aggarwal
et al. [4] describe a form of k-means clustering with market basket data, but for
this a similarity measure on transactions is required. This measure is based on
pair-wise item correlations; more complex (dis)similarities between transactions
may be missed. Moreover, many parameters (eight) have to be set manually,
including the number of clusters k.

Bi-clustering algorithms [92] look for linked clusters of both objects and
attribute-value pairs called bi-clusters. These methods impose more restrictions
on the possible clusters; for instance, they do not per se allow for overlap of the
attribute-value pairs in the clusters. Further, the number of clusters k often
has to be fixed in advance.

Koyotiirk et al. [66] regarded item data as a decomposable matrix, of which
the approximation vectors were used to build hierarchical cluster trees. How-
ever, rather many vectors are required for decomposition. Cadez et al. [22]
do probabilistic modelling of transaction data to characterise (profile) what we
would call the components within the data, which they assume to be known
beforehand.

Recently, a number of information theoretic approaches to clustering have
been proposed. The Information Bottleneck [107] can be used to find clusters by
minimising information loss. In particular, LIMBO [11] focuses on categorical
databases. Main differences with our approach are that the number of clusters
k has to be specified in advance, and as a lossy compression scheme is used
MDL is not applicable.

Entropy measures allow for non-linearly defined clusters to be found in
image segmentation tasks [46]. The MDL principle was used for vector quanti-
zation [17], where superfluous vectors were detected via MDL. Bohm et al. [18]
used MDL to optimise a given partitioning by choosing specific models for each
of the parts. These model-classes need to be pre-defined, requiring premonition
of the component models in the data. Cilibrasi & Vitdnyi [30] used pairwise

123

6. IDENTIFYING THE COMPONENTS

compression to construct hierarchical cluster trees with high accuracy. The
method works well for a broad range of data, but performance deteriorates
for larger (>40 rows) datasets. Kontkanen et al. [63] proposed a theoretical
framework for data clustering based on MDL which shares the same global
code length criterion with our approach, but does not focus on transaction
databases.

6.8 Conclusion

Transaction databases are mixtures of samples from different distributions;
identifying the components that characterise the data, without any prior knowl-
edge, is an important problem. We formalise this problem in terms of total com-
pressed size using MDL: the optimal decomposition is that set of code tables
and partitioning of the data that minimises the total compressed size. No prior
knowledge on the distributions, distance metric or the number of components
has to be known or specified.

We presented two approaches to solve the problem and provide parameter-
free algorithms for both. The first algorithm provides solutions by finding
optimal sets of code tables, while the second does this by finding the optimal
data partitioning. Both methods result in significantly improved compression
when compared to compression of the database as a whole. Component purity
and dissimilarity results confirm our hypothesis that characteristic components
can be identified by minimising total compressed size. Visual inspection shows
that MDL indeed selects sound groupings.

The approach we present can easily be adopted for other data types and
compression schemes. The KRrIMP-specific instantiation for categorical data in
this chapter shows that the MDL principle can be successfully applied to this
problem. The data driven method especially is very generic and only requires
a compression scheme that approximates the Kolmogorov Complexity of the
data.

124

Chapter 7

Compressing Tags to Find
Interesting Media Groups

On photo sharing websites like Flickr and Zooomr, users are offered the pos-
sibility to assign tags to their uploaded pictures'. Using these tags to find
interesting groups of semantically related pictures in the result set of a given
query is a problem with obvious applications. We analyse this problem from
a Minimum Description Length (MDL) perspective and develop an algorithm
that finds the most interesting groups. The method is based on KrRiMP, which
finds small sets of patterns that characterise the data using compression. These
patterns are sets of tags, often assigned together to photos.

The better a database compresses, the more structure it contains and
thus the more homogeneous it is. Following this observation we devise a
compression-based measure. Our experiments on Flickr data show that the
most interesting and homogeneous groups are found. We show extensive ex-
amples and compare to clusterings on the Flickr website.

I This chapter has been published as [68]: M. van Leeuwen, F. Bonchi, B. Sigurbjérnsson
& A. Siebes. Compressing Tags to Find Interesting Media Groups. In Proceedings of the
CIKM’09 (2009). Runner-up Best Student Paper.

125

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

7.1 Introduction

Collaborative tagging services have become so popular that they hardly need
any introduction. Flickr, del.icio.us, Technorati, Last.fm, or citeulike — just
to mention a few — provide their users with a repository of resources (photos,
videos, songs, blogs, urls, scientific papers, etc.), and the capability of assigning
tags to these resources. Tags are freely chosen keywords and they are a simple
yet powerful tool for organising, searching and exploring the resources.

Suppose you're fond of high dynamic range (HDR for short, a digital photo
technique) and you want to see what other photographers are doing in HDR.
You type the query hdr in Flickr and you get a list of more than one million
pictures (all pictures tagged with hdr). This is not a very useful representation
of the query result, neither for exploring nor for discovery. In a situation like
this, it is very useful to have the resulting pictures automatically grouped on the
basis of their other tags. For instance, the system might return groups about
natural elements, such as {sea, beach, sunset} and {cloud, winter, snow}, a
group about urban landscape {city, building}, or it may localise the pictures
geographically, e.g. by means of the groups {rome, italy} and {california,
unitedstates}. Grouping allows for a much better explorative experience.

Presenting the results of a query by means of groups may also help dis-
covery. Suppose you search for pyramid. Instead of a unique long list of
pictures, you might obtain the groups: {chichenitza, mexico}, {giza, cairo},
{luzor, lasvegas}, {france, museum, louvre, glass}, {rome, italy}, {glastonbury,
festival, stage}, and {alberta, edmonton, canada}. Thus you discover that there
are pyramids in Rome, Edmonton, and that there is a pyramid stage at the
Glastonbury festival. You would have not discovered this without groupings,
as the first photo of Rome’s pyramid might appear very low in the result list.

Grouping also helps to deal with ambiguity. E.g. you type jaguar and the
system returns groups about the animal, the car, the guitar, and the airplane.

In a nutshell, the problem at hand is the following: given the set of photos
belonging to a particular tag, find the most interesting groups of photos based
only on their other tags. Since we focus only on tags, we may consider every
photo simply as a set of tags, or a tagset.

But, what makes a group of photos, i.e. a bag of tagsets, “interesting”?
The examples just described suggest the following answer: large groups of
photos that have many tags in common. Another word for having many tags
in common is homogeneous, which results in the following informal problem
statement:

For a database Dg of photos containing the given query @ in
their tagsets, find all significantly large and homogeneous groups
G CDg.

126

7.1. Introduction

Actually, Flickr has already implemented Flickr clusters®, a tag clustering
mechanism which returns 5 groups or less. The method proposed in this chapter
is rather different: (1) it finds groups of photos, i.e. groups of tagsets, instead
of groups of tags, (2) it is based on the idea of tagset compression, and (3) it
aims at producing a much more fine grained grouping, also allowing the user
to fine-tune the grain.

Difficulties of the problem. All collaborative tagging services, even if deal-
ing with completely different kinds of resources, share the same setting: there
is a large database of user-created resources linked to a tremendous amount
of user-chosen tags. The fact that tags are freely chosen by users means that
irrelevant and meaningless tags are present, many synonyms and different lan-
guages are used, and so on. Moreover, different users have different intents and
different tagging behaviours [10]: there are users that tag their pictures with
the aim of classifying them for easy retrieval (maybe using very personal tags),
while other users tag for making their pictures visited by as many other users
as possible. There are users that assign the same large set of tags to all the pic-
tures of a holiday, even if they visited different places during the holiday; thus
creating very strong, but fake, correlations between tags. This all complicates
using tags for any data mining/information retrieval task.

Another difficulty relates to the dimensions of the data. Even when query-
ing for a single tag, both the number of different pictures and the number of
tags can be prohibitively large. However, as pictures generally only have up
to tens of tags, the picture/tag matrix is sparse. This combination makes it
difficult to apply many of the common data mining methods. For instance,
clustering methods like k-means [79] attempt to cluster all data. Because the
data matrices are large and sparse, this won’t give satisfactory results. Clus-
tering all data is not the way to go: many pictures simply do not belong to a
particular cluster or there is not enough information available to assign it to
the right cluster.

Our approach and contribution. We take a very different approach to the
problem by using MDL. In the current context, this means that we are looking
for groups of pictures that can be compressed well. We will make this more
formal in the next section.

We consider search queries) consisting of a conjunction of tags and we
denote by D¢ the database containing the results of a search query. Each
picture in Dg is simply represented by the set of tags it contains. Our goal is
to find all large and coherent groups of pictures in Dgy. We do not require all
pictures and/or tags to be assigned to a group.

The algorithm presented in this chapter uses KRIMP to compress the entire

2see www.flickr.com/photos/tags/jaguar/clusters/

127

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

dataset to obtain a small set of descriptive patterns. These patterns act as
candidates in an agglomerative grouping scheme. A pattern is added to a
group if it contributes to a better compression of the group. This results in a
set of groups, from which the group that gives the largest gain in compression
is chosen. This group is taken from the database and the algorithm is re-run
on the remainder until no more groups are found. The algorithm will be given
in more detail in Section 7.3.

We collect data from Flickr for our experiments. To address the problems
specific for this type of data (mentioned above), we apply some pre-processing.
Among this is a technique based on Wikipedia redirects (see Section 7.4).

Experiments are performed on a large number of queries. To demonstrate
the high quality of the results, we show extensive examples of the groups found.
For a quantitative evaluation, we introduce a compression-based score which
measures how good a database can be compressed. Using this score, we com-
pare our method to the groups that can be found by Flickr clusters. The results
show that our method finds groups of tagsets that can be compressed better
than the clusters on Flickr. Even more important, pictures not grouped by our
method cannot be compressed at all, while pictures not grouped in the current
Flickr implementation can be compressed and thus contain structure.

7.2 The Problem

Preliminaries: MDL for Tagsets

Given are a query @ and some mechanism that retrieves the corresponding
set of pictures Dg. We represent this set of pictures as a bag of tagsets (each
picture represented by its associated tagset). Hence, the situation is identical
to that in previous chapters. Since in this case the transactions and patterns
of interest consist of tags, we call them tagsets instead of itemsets and we have
a set of tags 7 instead of a set of items Z. For the rest, we apply the same
theory and notation as in Chapter 2. We sometimes slightly abuse notation in
this chapter by denoting L(D | CT) with shortcut CT (D).

To measure structure in a database, we here introduce the notion of com-
pressibility.
Definition 14. Let D be a database over T and CT its optimal code table, we
define compressibility of D as
. L(D,CT)
compressibility(D) = 1 L(D.ST)"

The higher compressibility, the more structure we have in the database. If
compressibility is 0, there is no structure discernible by a code table.

128

7.2. The Problem

Problem Statement

Recall that our goal is to find all significantly large and homogeneous groups
in the data. Both significantly large and homogeneous are vague terms, but
luckily both can be made more precise in terms of compression.

Homogeneous means that the group is characterised by a, relatively, small
set of tags. That is, a group is homogeneous if it can be compressed well relative
to the rest of the database. Hence, we should compare the performance of an
overall optimal code table with a code table that is optimal on the group only.
For this, we define compression gain:

Definition 15. Let D be a database over T, G C D a group and CTp and CTg
their respective optimal code tables. We define Compression Gain of group G,
denoted by gain(G,CTp), as

gain(G,CTp) = CTp(G) — CTg(G).

If the gain in compression for a particular group is large, this means that it
can be compressed much better on its own than as part of the database. Note
that compression gain is not strictly positive: negative gains indicate that a
group is compressed better as part of the database. This could e.g. be expected
for a random subset of the data.

Compression Gain is influenced by two factors: (1) homogeneity of the
group and (2) size of the group. The first we already discussed above. For the
second, note that if two groups G; and G5 have the same optimal code table
CT and G, is a superset of Ga, then L(G1, CT) will necessarily be bigger than
L(G5,CT). Hence, bigger groups have potentially a larger compression gain.
Since we look for large, homogeneous groups, we can now define the best group.

Problem 6 (Maximum Compression Gain Group). Given a database D over
a set of tags T and its optimal code table CT, find that group G C D that
mazimises gain(G,CT).

We do not want to find only one group, but the set of alllarge homogeneous
groups. Denote thisset by G = {G1,...,Gy}. G contains all large homogeneous
groups if the remainder of the database contains no more such groups. That
is, if the remainder of the database has compressibility 0. Since we want our
groups to be homogeneous, we require that the GG; are disjoint. We call a set
of groups that has both these properties a grouping, the formal definition is as
follows.

129

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

Definition 16. Let D be a database over T and G = {Gq,...,G,} a set of
groups in D. G is a grouping of D iff

1. compressibility (D\ (UGieg Gl)> =0

The grouping we are interested in is the one that maximises the total Com-
pression Gain.

Problem 7 (Interesting Tag Grouping). Given a database D over a set of tags
T and its optimal code table CT, find a grouping G of D such that

Z gain(G;, CT)
Gieg

1s maximal.

7.3 The Algorithm

In this section, we propose a new algorithm for the Interesting Tag Grouping
problem. Our method is built upon KRIMP with pruning.

Code Table-based Groups

For the Mazimum Compression Gain Group problem, we need to find the group
G C D that maximises gain(G, CT). Unfortunately, gain(G, CT) is neither a
monotone nor an anti-monotone function. If we add a small set to G, the gain
can both grow (a few well-chosen elements) or shrink (using random, dissimilar
elements). Given that D has 2/Pl subsets, this means that computing the group
that gives the maximal compression gain is infeasible. A similar observation
holds for the Interesting Tag Grouping problem.

Hence, we have to resort to heuristics. Given that the tagsets in the code
table C'T' characterise the database well, it is reasonable to assume that these
tagsets will also characterise the maximum compression gain group well. In
other words, we only consider groups that are characterised by a set of code
table elements.

Each code table element X € CT is associated with a bag of tagsets, viz.,
those tagsets which are encoded using X. If we denote this bag by G(X, D),
we have

G(X,D)={teD| X € cover(CT,t)}.

130

7.3. The Algorithm

For a set g of code table elements we simply take the union of the individual
bags, i.e.
G(g.D) = | ¢(x, D).

Xeg

Although a code table generally doesn’t have more than hundreds of tagsets,
considering all 21°| such groups as candidates is still infeasible. In other words,
we need further heuristics.

Growing Homogeneous Groups

Let D; and D, be two databases over the same set of tags 7, with code tables
CTy and CTy, respectively. Moreover, let CT; ~ CTs, i.e. they are based on
more or less the same tagsets and the code lengths of these tagsets are also
more or less the same. Then it is highly likely that the code table C'T,, of
D1 UDs will also be similar to C'T7 and CTs. In other words, it is highly likely
that

L(Dl U DQ, OTU) < L(Dl, CTl) + L(Dg, OTQ)

This insight suggests a heuristic: we grow homogeneous groups. That is, we
add code table elements one by one to the group, as long as the group stays
homogeneous.

This strategy pre-supposes an order on the code table elements: which code
table element do we try to add first? Given that the final result will depend on
this order, we should try the best candidate first. In the light of our observation
above, the more this new tagset has in common with the current set of code
table elements the better a candidate it is. To make this precise, we define the
notion of coherence.

Definition 17. Let D be a database over the tagset T and let CT be its code
table. Moreover, let X € CT and g C CT. Finally, let U(g) = Uy, Y. Then
the group coherence of X with g, denoted by coherence(X, g, D), is defined as

coherence(X, g,D) = Z usagec(qg,p)({1})-
i€(XNU(g))

Given a set of candidate tagsets Cands, the best candidate to try first is
the one with the highest coherence with the current group, i.e.

bestCand(g, D, Cands) = argmax coherence(X, g, D).
XeCands

Next to this order, we need a criterion to decide whether or not to accept the
candidate. This is, again, based on compression.

131

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

Algorithm 11 Grow Homogeneous Group
GrROWGROUP(g, D, CT, gMinsup) :

1. Cands — CT
2. while Cands # () do

3. best — bestCand(g, D, Cands)

4. Cands < Cands \ best

5. if ACCEPTCANDIDATE(best, g, D,CT, gMinsup) then
6. g «— g U {best}

7. end if

8. end while
9. return g
AcCEPTCANDIDATE((best, g, D, CT, gMinsup) :
10. G — G(g,D)
11. G' — G(gU{best}, D)
12. § — G'\G
13. CTg «— KRIMP(G, MineCandidates(G, gMinsup))
14. CTg «— KRIMP(G’, MineCandidates(G’, gMinsup))
15. return CTq (G') < CTg(G) + CT(9)

Definition 18. Let g be the set of tagsets that define the current group G =
G(g,D). Consider candidate X, with candidate cluster G' = G(gU{X},D) and
0 =G'\G. Let CTp, CTg and CTg be the optimal code tables for respectively
D, G and G'. We now accept candidate X iff

CTe (G') < CTa(G) + CTp(6).

When a candidate helps to improve compression of all data in the new
group, we decide to keep it. Otherwise, we reject it and continue with the next
candidate. The algorithm that does this is given in Algorithm 11.

Finding Interesting Tag Groups

The group growing algorithm given in the previous subsection only gives us
the best candidate given a non-empty group. In line with its hill-climbing
nature, we consider each code table element X € CT as starting point. That
is, we grow a group from each code table element and choose the one with the
maximal compression gain as our Maximum Compression Gain Group. Note
that this implies that we only need to consider |CT| possible groups.

To solve the Interesting Tag Grouping problem we use our solution for the
Mazimum Compression Gain Group problem iteratively. That is, we first find

132

7.3. The Algorithm

Algorithm 12 Find Interesting Tag Groups
FINDTAGGROUPS(D, minElems, dbMinsup, gMinsup) :

1. groups <)

2. loop

3. CT « KriMP(D, MineCandidates(D, dbMinsup))

bestGain «— 0

best «— ()

for all X € C'T do
cand — GROWGROUP({X }, D, CT, gMinsup)
if gain(G(cand,D),CT) > bestGain and |cand| >= minElems then

bestGain «— gain(G(cand,D),CT)

10. best «— cand

11. end if

12. end for

13. if best # () then

© X N o

14. groups «— groups U {(best, G(best, D))}
15. D — D\ G(best,D)

16. else

17. break

18. end if

19. end loop
20. return groups

the Maximum Compression Gain Group G on D, then repeat this on D\ G, and
so on until no group with gain larger than 0 can be found. This simple recursive
scheme is used by the FINDTAGGROUPS algorithm presented in Algorithm 12.

The algorithm has four parameters, with database D obviously being the
most important one. The second parameter is the minimum number of code
table elements a group has to consist of to get accepted. KRIMP requires a
minimum support threshold to determine which frequent tagsets are used as
candidates and we specify these separately for the database (dbMinsup) and
the groups (gMinsup). We will give details on parameter settings in Section 7.5.

The result of the FINDTAGGROUPS algorithm is a set of pairs, each pair
representing a group of the grouping. Each pair contains (1) the code table
elements that were used to construct the group and (2) the transactions be-
longing to the group. The former can be used to give a group description that
can be easily interpreted, as these are the tagsets that characterise the group.
E.g. a group description could be the k& most frequent tags or a ‘tag cloud’
with all tags.

133

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

Table 7.1: Dataset properties.

Query |7 |db| #tags/photo
Architecture 13657 541810 8.0
Art 15498 861711 8.5
Bicycle 10126 98304 6.1
Black and white 14042 567554 7.4
Eiffeltower 3994 13087 4.8
Florence 5299 42528 5.3
Fun 9162 5533 14.2
HDR 12788 210389 7.3
Hollywood 9090 51176 7.7
Jaguar 9283 10996 7.0
Manhattan 9328 167087 6.8
Niagara falls 3144 11307 4.8
Night 13366 790277 7.4
Portrait 12982 846530 7.6
Pyramid 7288 15657 6.9
Reflection 13157 437769 7.5
Rock 16305 249790 8.0
Skyscraper 9298 42292 8.5
Spain 9376 324682 6.9
Windmill 8474 23838 5.9

7.4 Data Pre-processing

Our data collection consists of tagsets from Flickr photos. We evaluate the
performance of the algorithm on a diverse set of datasets. Each dataset consists
of all photos for a certain query, i.e. all photos that have a certain tag assigned.
Table 7.1 shows a list of the queries used to evaluate the algorithm, together
with some properties of the pre-processed queries. We use a wide range of
different topic types, ranging from locations to photography terms, with general
and specific, as well as ambiguous and non-ambiguous queries.

To reduce data sparsity we limit our attention to a subset of the Flickr tag
vocabulary, consisting of roughly a million tags used by the largest number of
Flickr users. Effectively this excludes only tags that are used by very few users.

Another source of data sparsity is that Flickr users use different tags to
refer to the same thing. The source of this sparsity can have several roots:

134

7.4. Data Pre-processing

new york city city new york, new york, city of new york, new york skyline,
nyc, new yawk, ny city, the city that never sleeps, new york new york

italy italie, italia, perve

eiffel tower eciffle tower, iffel tower, effel tower, tour eiffel, eifel tower, eiffel
tour, the eiffel tower, la tour eiffel, altitude 95

skyscraper skyscrapers, office tower, tall buildings, skyskraper, skycrappers

Figure 7.1: Examples of tag transformations using Wikipedia redirects.

(1) singular or plural forms of a concept (e.g. scyscraper, skyscrapers); (2)
alternative names of entities (e.g. New York City, NYC, New York NY); (3)
multilingual references to the same entity (e.g. Italy, Italia, Italie); or (4)
common misspellings of an entity (e.g. Effel Tower, Eifel Tower). We address
this problem using Wikipedia redirects. If a user tries to access the ‘NYC’
Wikipedia page she is redirected to the ‘New York City’ Wikipedia page. We
downloaded the list of redirects used by Wikipedia and mapped them to Flickr
tags using exact string matching. This results in a set of rewrite rules we used
to normalise the Flickr tags. E.g. all occurrences of the tag ‘nyc’ were replaced
by the tag ‘new york city’.

Figure 7.1 shows some examples of the rewrite rules that were gathered
using Wikipedia redirects. The figure shows all strings that were transformed
to the given normalised string (bold). We can see that using the redirects we
address, to some extent, the problem of singular/plural notation, alternative
names, multilinguality and common misspellings.

A very common ‘problem’ in Flickr data is that users assign a large set of
tags to entire series of photos. For example, when someone has been on hol-
iday to Paris, all photos get the tags europe, paris, france, eiffeltower, seine,
notredame, arcdetriomphe, montmartre, and so on. These tagsets are mislead-
ing and would negatively influence the results. As a workaround, we make all
transactions in a dataset unique; after all, we cannot distinguish photos using
only tag information if they have exactly the same tags.

Another issue pointed out by this example is that some items are not infor-
mative: e.g. if we query for eiffeltower, many of the transactions contain the
tags europe, paris and france. If one were to find a large group, including these
high-frequent tags would clutter the results. Therefore, we remove all items
with frequency > 15% from each dataset. One final pre-processing step is to
remove all tags containing either a year in the range 1900-2009 or any camera
brand, as both kinds of tags introduce a lot of noise.

135

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

7.5 Experiments

Experimental Setup

To assess the quality of the groups produced by the FINDTAGGROUPS algo-
rithm, a large number of experiments was performed on the datasets for which
basic properties are given in Table 7.2. The experiments reported on in this
section all use the same parameter settings:

dbMinsup = 0.33% This is the minsup parameter used by KRIMP to
determine the set of candidate frequent tagsets (see Algorithm 12). This pa-
rameter should be low enough to enable KRIMP to capture the structure in the
data, but not too low as this would allow very infrequent tagsets to influence
the results. For this application, we empirically found a dbMinsup of 0.33% to
always give good results.

gMinsup = 20% This parameter is used when running KRIMP on a group
(see Algorithms 11 and 12). As groups are generally much smaller than the
entire database, this parameter can be set higher than dbMinsup. We found a
setting of 20% to give good results.

minElems = 2 This parameter determines the minimum number of code
table elements required for a group. In practice, it acts as a trade-off between
fewer groups that are more conservative (low value) and more groups that are
more explorative (high value). Unless mentioned otherwise, this parameter is
fixed to 2.

An Example Query

To demonstrate how the algorithm works and performs, let us first consider a
single dataset: Bicycle. As we can see from Table 7.2, it contains 98,304 photos
with a total of 10,126 different tags assigned, 6.1 per photo on average.

When FINDTAGGROUPS is applied on this dataset, it first constructs a
code table using KrRIMP. Then, a candidate group is built for each tagset in
the code table (using the GROWGROUP algorithm). One such tagset is {race,
tourofcalifornia} and the algorithm successfully adds coherent tags to form a
group: first the tagset {race, racing, tourofcalifornia, atoc, toc}, then {race,
racing, tourofcalifornia, atoc}, {race, racing, tourofcalifornia, stage3}, and so
on until 22 code table elements have been selected to form a group.

Compression gain is computed for each of the candidate groups constructed
and the group with the maximal gain is chosen. In this case, the group with
most frequent tags {race, racing, tourofcalifornia, atoc, cycling} has the largest
gain (57,939bits) and is selected. All 3,564 transactions belonging to this group

136

7.5. Experiments

0.035

0.03

0.025

o
o
]

0.015

Compressibility

0.01

0.005

0 2 4 6 8 10

groups
Figure 7.2: Database compressibility for Bicycle when applying FINDTAG-
GROUPS (minElems = 2).

are removed from the database, a new code table is built on the remainder of
the database and the process repeats itself.

As explained in Section 7.2, we can use compressibility to measure how
much structure is present in a database. If we do this for the group we just
found, we get a value of 0.05, so there is some structure but not too much.
However, it is more interesting to see whether there is any structure in the
remainder of the database. Compressibility of the original database was 0.029,
after removing the group it is 0.024, so we removed some structure. Figure 7.2
shows database compressibility computed each time after a group has been
removed. This shows that we remove structure each time we form a group and
that there is hardly any structure left when the algorithm ends: compressibility
after finding 10 groups is 0.008.

So far we assumed the minFElems parameter to have its default value 2. How-
ever, Figure 7.3 shows the resulting groupings for different settings of minElems.
Each numbered item represents a group and the groups are given in the order
in which they are found. For each group, the union of the code table elements
defining the group is taken and the tags are ordered descending on frequency
to obtain a group description. For compact representation, only the 5 most
frequent tags are given (or less if the group description is smaller). Font size
represents frequency relative to the most frequent tag in that particular group
description.

137

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

Clearly, most groups are found when minFElems = 1. Groups with different
topics can be distinguished: sports activities (1, 3, 8, 11), locations (4, 7, 9,
10, 12, 15, 16, 18, 19), ‘general circumstances’ (6, 14, 17). The second group
is due to a linguistic problem which is not solved by the pre-processing.

Increasing minFElems results in a reduction in the number of groups. This
does not mean that only the top-k groups from the minElems = 1 result set
are picked. Instead, a subset of that result set is selected and sometimes even
new groups are found (e.g. minElems = 12, group 3). Unsurprisingly, increas-
ing the minElems value results in fewer groups with larger group descriptions.
These are often also larger in the number of transactions and can generally be
regarded more confident but less surprising. For the examples in Figure 7.3,
for minElems = 1 a group on average contains 1,181 transactions, 1,828 trans-
actions for minElems = 2, 3,034 transactions for minFElems = 6 and 3,325
transactions for minElems = 12.

We found minElems = 2 to give a good balance in the number of groups,
the size of the groups and how conservative/surprising these are. We therefore
use this as the default parameter setting in the rest of the section.

More Datasets

Table 7.2 shows quantitative results for all datasets. From this table, we see
that the algorithm generally finds 10-20 groups, but sometimes more, with fun
as extreme with 50 groups. This can be explained by the fact that ‘fun’ is
a very general concept, so it is composed of many very different conceptual
groups and these are all identified. On average, between 5 and 8 code table
elements are used for a group. The average number of transactions (photos)
that belong to a group depends quite a lot on the dataset. Average group sizes
range from only 73 for fun up to 17,899 for art. However, the size relative to
the original database does not vary much, from 1.3% up to 2.7%. The complete
groupings usually give a total coverage between 20 and 40%.

The three rightmost columns show compressibility values: for the groups
found (averaged), for the database remaining after the algorithm is finished and
for the initial database (called base). The compressibility of the initial database
can be regarded as a baseline, as it is an indication of how much structure is
present. In general, there is not that much structure present in the sparse tag
data so values are not far above 0. However, the groups identified have more
structure than baseline: for all datasets, average group compressibility is higher
than baseline. Even more important is that compressibility of the database
remaining after removing all groups is always very close to 0 (<= 0.01). Hence,
all structure that was in the database has been captured.

To give some more insight in the groups found by the algorithm, Figures 7.4

138

7.5. Experiments

Table 7.2: Quantitative results obtained with the FINDTAGGROUPS algorithm.

Group average Compressibility
Query |G| #elems #transactions group avg rest base
Architecture 22 5.5 8507 (1.6%) 0.064 0.006 0.047
Art 15 7.9 17899 (2.1%) 0.034 0.002 0.032
Bicycle 10 7.1 1828 (1.9%) 0.061 0.008 0.029
Black & white 17 6.5 10815 (1.9%) 0.056 0.004 0.037
Eiffeltower 12 6.7 309 (2.4%) 0.072 0.001 0.039
Florence 18 6.9 731 (1.7%) 0.078 0.007 0.048
Fun 50 6.3 73 (1.3%) 0.213 0.009 0.137
HDR 14 5.4 3608 (1.7%) 0.043 0.005 0.032
Hollywood 24 8.1 731 (1.4%) 0.112 0.004 0.081
Jaguar 11 9.3 251 (2.3%) 0.132 0.012 0.067
Manhattan 19 8.6 3125 (1.9%) 0.081 0.005 0.063
Niagara falls 18 5.8 227 (2.0%) 0.117 0.006 0.048
Night 19 5.0 13011 (1.6%) 0.043 0.004 0.034
Portrait 19 6.2 15477 (1.8%) 0.047 0.002 0.037
Pyramid 20 11.2 369 (2.4%) 0.115 0.004 0.066
Reflection 17 6.3 8660 (2.0%) 0.036 0.005 0.033
Rock 13 15.9 6635 (2.7%) 0.092 0.005 0.044
Skyscraper 38 8.8 731 (1.7%) 0.059 0.009 0.083
Spain 19 6.3 5670 (1.7%) 0.079 0.008 0.054
Windmill 13 7.6 574 (2.4%) 0.066 0.003 0.036

For each dataset, the number of groups found, the average number of
code table elements and transactions per group are given. Compress-
ibility is shown for all groups (averaged), the database remaining after
the algorithm is finished and the initial database.

139

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

and 7.5 show additional results for 4 datasets. In general, the resulting groups
clearly identify specific photo collections that are conceptually different. Some-
times there appears to be some redundancy (from a semantic point of view),
but in most cases additional tags reveal subtle differences. Note that not all
tags that are part of the group descriptions are shown.

Some groups are surprising. For example, the second group for black and
white, with dewolf as most frequent tag. At first sight, it looks like a single
user got chosen as secondmost important concept for this query. However,
performing a Flickr search for blackandwhite and dewolf quickly learns us that
there is a Nick DeWolf photo archive project and this archive contains over
13,000 black&white pictures taken by this co-founder of Teradyne in Boston.
After all, it is thus by no means strange that this comes up as second group.

Compared to Flickr

As mentioned in the introduction, Flickr offers its visitors the possibility to
browse through ‘clusters’ of photos given a certain tag. However, Flickr clus-
ters are conceptually different from our groupings: (1) Flickr clusters consist of
tags, not pictures, (2) Flickr only gives 1 to 5 clusters and (3) clusters are usu-
ally quite general and conservative (hardly surprising). An objective semantic
comparison of the groups we find to the Flickr clusters is therefore impossible;
it would come down to subjective preference of the person asked.
To give an example, Flickr gives the following clusters for bicycle®:

1. bike street bw cycling city urban cycle red road bikes
amsterdam netherlands holland

fixie fixed fixedgear gear

Ll

england uk

It is up to personal taste whether you prefer this or the groupings we pre-
sented in Figure 7.3. What we can do though, is to ‘simulate’ Flickr clusters
with the data we have and compute compressibility values for both the clusters
and the unclustered photos. To this end, we first retrieve the tagsets that iden-
tify the clusters from the Flickr website and pre-process these the same way we
pre-processed our data. Next, take the pre-processed datasets also used for the
previous experiments and assign each transaction to one of the clusters or to
the database with ‘remaining’ photos. Each cluster is constructed as follows:
each photo is assigned to the tagset with which it has the largest tag intersec-
tion. (In case of a tie, the transaction is assigned to the first tagset with the

3www.flickr.com/photos/tags/bicycle/clusters/

140

7.5. Experiments

largest intersection, clusters ordered as on the website.) Any transactions that
do not intersect with any of the cluster’s tagsets are assigned to the remainder
database.

For all queries used in this chapter, Flickr presents 3.5 clusters on average.
Average compressibility for all Flickr clusters we obtained is 0.014. This means
that there is hardly any structure in the clusters that can be captured in a code
table by KRIMP, much less than the groups the FINDTAGGROUPS algorithm
finds.

More important are the compressibility values computed for the database
containing all photos not belonging to any cluster: is there any structure left?
The average value we obtained for all datasets is 0.035, clearly indicating that
there is structure not yet captured in one of the clusters. Figure 7.6 shows a
comparison of remaining database compressibility between the Flickr method
and our method. It is easy to see that our method is better at finding all
structure in the database than Flickr’s method is.

Runtimes

All experiments have been performed on a machine with a 3GHz Intel Xeon
CPU and 2Gb of memory. Runtimes depend on a large number of factors,
amongst which the number of tags |7| and transactions |D|. The amount of
structure and the number of groups also play an important role. 9 datasets
required less than 20 minutes, with Fiffeltower being the quickest taking only 3
minutes. The remaining datasets took longer than that, with timings ranging
from 1 hour for Fun and HDR, up to 20 hours for Architecture and Portrait.

These runtimes indicate that the method should be used offline, not online
at query time. For most queries, stability of the resulting groupings should be
high, implicating that the algorithm does not need to be re-run often.

Discussion

Using compression, the FINDTAGGROUPS algorithm aptly finds significantly
large and homogeneous groups in tag data. The groupings usually contain be-
tween 20% and 40% of the photos in the database, a fair amount given the
sparsity of the data. Compressibility shows that the groups are more homoge-
neous than the original database, while there is no discernible structure left in
the remaining database.

Manual inspection of the groups shows that the quality of the groupings
is high; a manageable number of semantically coherent groups is found. As
each group is characterised by a small set of tagsets, it is easy to give intuitive
group descriptions using tag clouds. The grain of the groups returned by the

141

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

algorithm can be fine-tuned by the end-user: he may either wish for more,
smaller and explorative groups or prefer less, larger and conservative groups.

A qualitative comparison to Flickr clusters is difficult, but by simulat-
ing these clusters we showed that Flickr clusters leave more structure in the
database than our method.

Data preparation is very important, due to the amount of noise present in
user-generated tagsets. The method based on Wikipedia redirects solves many
problems with synonyms and other linguistic issues.

In the experiments we focus on pictures, but our algorithm can find groups
for any type of tagged resource. Apart from improving usability of tag search-
ing, groupings could also be used for applications like tag recommendation
[102,103].

7.6 Related Work

The main reference for our work is Flickr clusters. Even if the technical details
are not public, by observing the results we can infer (1) that it clusters tags,
as the same tag can not belong to more than one group, and (2) that the
maximum number of clusters is 5. As said in the introduction our method
finds groups of pictures, i.e. groups of tagsets, instead of groups of tags, and
it aims at producing a much more fine grained grouping. A consequence of
having a larger number of groups is that they have larger cohesiveness.
Begelman et al. [15] propose to first build a graph of tags and then to
apply a spectral bisection algorithm in combination with modularity measure
optimization. Similar to Flickr clusters, they cluster the tags and not the
resources (URLs). Another difference with our work is that they try to cluster
the whole tag space, e.g. for creating multiple, more cohesive, tag clouds instead
of a unique large tag cloud. Instead we focus on the result set of a given query.
Recently, three other papers [47,96, 124] have studied the use of tags from
large-scale social bookmarking sites (such as del.icio.us) for clustering web
pages in semantic groups. Ramage et al. [96], explore the use of clusterings
over vector space models that includes tags and page text. In this vector space
k-means is compared to a novel generative clustering algorithm based on latent
Dirichlet allocation. Zhou et al. [124] investigate the possibility of devising gen-
erative models of tags and documents contents in order to improve information
retrieval. Their holistic approach combines a language model of the resources
and the tags with user domain categorisation. Another work considering re-
sources, tags, and users in a unifying framework is by Grahl et al. [47]. They
present a conceptual clustering where first tags are clustered by k-means, then
the FolkRank [54] algorithm is applied to discover resources and users that are
related to each cluster of tags. Yeung et al. [12] also focus their analysis on

142

7.7. Conclusions

resources-tags-users triplets, in particular for tag disambiguation.

Subspace clustering [67] tries to find clusters in ‘subspaces’ of the data,
where a subspace is usually defined as subsets of both the data points and
attributes. There are two important differences with our method. First, tags
are not dimensions and the fact that a tag is not present may mean different
things — we only look at the tags that are present. Secondly, we do not attempt
to group all data, which subspace clustering methods still do.

7.7 Conclusions

We propose an algorithm that addresses the problem of finding homogeneous
and significantly large groups in tagged resources, such as photos. The method
is based on the MDL principle and uses the KrRIMP algorithm to characterise
data with small sets of patterns. The best group is the group that gives the
largest gain in compression, i.e. it can be compressed much better as a group
than as part of the entire database. To assess the amount of structure present
in a database, we define compressibility: the better a database or group com-
presses, the more structure it contains.

We perform experiments on a large collection of datasets obtained from
Flickr; the data consists of tagsets belonging to photos. A pre-processing tech-
nique based on Wikipedia redirects solves many problems typical for this type
of data. Experiments show that semantically related groups are identified and
no structure is left in the database.

143

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

minElems = 1
1. race racing tourofcalifornia atoc cycling
2. bicicleta bici fahrrad cycling
3. freestyle bmx
4. netherlands amsterdam holland nederland fiets
5. fixedgear fixie fixed gear trackbicycle
6. travel trip
7. street tokyo bw japan people

8. cycling cycle mountainbike mtb london

9. newyorkcity city urban china beijing

10. portland oregon bikeportland

11. pl2 pro racing race

12. canada bc toronto

13. black white

14. blue sky red cloud

15. sanfrancisco california st

16. unitedkingdom england

17. winter snow

18. paris france

19. shanghai china

20. child kid

minElems = 2
1. race racing tourofcalifornia atoc cycling

bicicleta bici fahrrad cycling
netherlands amsterdam holland nederland fiets
bmx freestyle oldschool
fixedgear fixie fixed gear trackbicycle
tokyo china japan street people
cycling cycle mountainbike mtb london
newyorkcity city urban manhattan street

9. portland oregon bikeportland
10. sky blue cloud red

minElems = 6
1. race racing tourofcalifornia atoc cycling
2. netherlands amsterdam holland fahrrad nederland
3. street tokyo bw japan people
4. cycling city urban cycle street
5. fixedgear fixie fixed gear track

PN T W

minElems = 12
1. race racing tourofcalifornia atoc cycling
2. netherlands amsterdam holland fahrrad nederland
3. street city urban people bw

Figure 7.3: Groups for Bicycle (different settings for minElems, showing the 5
most frequent tags per group).

144

7.7.

Conclusions

Black and white

1.

O NSO W

9.
10.
11.
12.
13.
14.
15.
16.
17.

black art girl kid

dewolf blackwhite nick boston

bn biancoenero blancoynegro italy portrait
woman girl portrait female face

film 35mmfilm format °120° ilford
noiretblanc france paris nb blancoynegro
selfportrait me 365days portrait self
portrait people face black man
unitedkingdom england london monochrome blackwhite
white black blackwhite

street urban city newyorkcity manhattan
tree cloud nature sky winter

cat pet animal dog kitty

black white light

child kid portrait girl boy

beach sand ocean sea water

flower macro nature

Night

1.
. newyorkcity manhattan lights christmas newyork
. france paris nuit europe

. japan tOkyO light geotagging city

. thestand sky cloud luna tree

0N oUW N

california sanfrancisco sanfranciscobayarea city urban

london unitedkingdom england riverthames lights

. party people friends recreation portrait
. neon sign lights

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

sky cloud sunset star tree

italy notte rome roma

light darkness street color red

city lights urban street light

long exposure longexposure light lights
lights black darkness white street
water bridge reflection river lights
australia sydney melbourne
germany nacht berlin

building lights light architecture tree
canada ontario toronto

Figure 7.4: Results for Black and white and Night (showing < 5 tags per group).

145

7. COMPRESSING TAGS TO FIND INTERESTING MEDIA GROUPS

Reflection

1. selfportrait me mirror 365days self
beach sunset sea cloud sky
lake tree landscape nature mountain
nature tree bird pond green
night light river lights bridge
building architecture glass sky blue
tree autumn river leaf pond

PN TR LN

hght shadow color glass mirror
9. unitedkingdom england london

10. sky cloud blue tree

11. mirror portrait self automobile girl

12. macro drop closeup

13. black white bw blackandwhite

14. window glass shop street

15. red blue green yellow color

16. newyorkcity manhattan newyork

17. sunset sun sky
Pyramid

1. itza chichenitza maya mexico chichen

france museum glass europe architecture
sanfrancisco transamerica california francisco san
giza cairo sphinx khufu africa
mexico ruins chichenitza mayan maya
mexico ruins mexicocity teotihuacan puebla
mexico teotihuacan guatemala maya tikal
mountain switzerland niesen hurni christopher

9. luxor lasvegas nevada casino hotel
10. sky cloud architecture blue building
11. camel cairo saqqara sand desert
12. france night bw pyramide blackandwhite

PN O N

13. rome 1taly piramide roma museo

14. glastonbury festival stage glastonburyfestival

15. mexico travel chichen itza trip

16. alberta edmonton canada muttartconservatory conservatory
17. poodle babyboy royalcanin keops love

18. night light lights

19. galveston texas moodygardens

20. france architecture fountain

Figure 7.5: Results for Reflection and Pyramid (showing < 5 tags per group).

146

7.7. Conclusions

0.04

0.035

0.03

2 0025
5
wv

$ 002
[e
§

O 0.015

0.01

0.005

0

Bicycle Night Pyramid Reflection
Dataset

[0 Flickr [FindTagGroups

Figure 7.6: Remaining database compressibility compared to Flickr, for 5
datasets.

147

Chapter 8

Conclusions

In this thesis we addressed the well-known pattern explosion in pattern mining;
mining patterns from data is easy, but the result is usually a gigantic amount
of patterns, harming both usability and interpretability. We therefore stated
the following research objective:

Develop methods that find small, human—interpretable, pattern—based
descriptive models on large datasets.

Hence, the goal was to find small pattern sets that together describe the
data well. For this task, considering individual patterns is not good enough — a
quality criterion for pattern sets was needed. One of the main contributions of
this thesis is the approach we took to this problem. We chose to use compression
to determine which set of patterns is the best descriptive model:

The best set of patterns is that set that compresses the data best.

In Chapter 2, we presented the theoretical foundations to do this, all based
on lossless compression. Or, to be more precise, all based on the Minimum
Description Length (MDL) principle. We introduced code tables, pattern-based
models, and defined how to compute the total compressed size of a code table
and a database encoded with this code table. We showed that the search space
for finding the best compressing code table is enormous and that we therefore
have to resort to heuristics, as is usual with MDL.

The KRIMP algorithm approximates the optimal code table for itemset data,
by iteratively considering candidate patterns for addition to the code table. If a
pattern helps to improve compression, it is kept, otherwise it is permanently dis-
carded. The extensive experimental evaluation showed that this simple scheme
results in small code tables that compress the data well. The code tables are

149

8. CONCLUSIONS

non-redundant and insightful, as they allow for human inspection and inter-
pretation. Additionally, they are very characteristic for the data, as shown by
the good classification scores obtained with the KriMP Classifier. Finally, the
KRIMP algorithm runs fast and large datasets pose no problems, showing that
this type of pattern selection approach is practically feasible.

In Chapters 3-7, we used KRIMP as foundation for solving a series of well-
known problems in Knowledge Discovery. Each of the proposed solutions fits
the main research objective, as each of them uses KRIMP code tables as models.
These contributions can be summarised as follows.

Characterising differences KRIMP code tables can be easily used to both
quantify and characterise differences between databases. The database
dissimilarity measure quantifies differences, the patterns in the code ta-
bles allow for manual inspection and visualisation of differences on three
different levels (i.e. on database, transaction and code table level).

Preserving privacy by generating data We have shown that privacy in
databases can be preserved by generating new data that replaces the
original data. For this, we presented an algorithm that generates cate-
gorical data that is virtually indiscernible from the original data.

Detecting changes The STREAMKRIMP algorithm detects changes and fully
characterises data streams, online and with bounded storage. Each sam-
pling distribution is captured in a code table and compression is used to
accurately detect (sudden) changes.

Identifying database components We introduced two methods, based on
orthogonal approaches, to identify the components that together form a
database. One method is model-driven, the other is data-driven, but in
both cases each identified component is characterised by a code table.

Finding interesting groups Finally, we presented an algorithm that grows
homogeneous groups of transactions within a database, again using com-
pression as quality criterion.

Throughout this thesis, we have focused on developing generic algorithms
that can be used for many different applications in different areas. Most al-
gorithms have no or very few parameters and usually no a priori knowledge is
required. This makes the algorithms widely applicable in many disciplines.

As is usual in Data Mining, both data pre-processing and representation is
important. Our KRIMP algorithm works on itemset data, and therefore also
on categorical data. However, our MDL-based approach can be extended to

150

other data types as well. Actually, this has already been done for sequences &
trees [13] and multi-relational data [64,65].

The main conclusion of this thesis is that mining less, but more character-
istic patterns is key to successful Knowledge Discovery. Using compression for
pattern selection works extremely well; MDL picks the patterns that matter
and effectively solves the pattern explosion in pattern mining. The resulting
small pattern sets accurately describe the data and can be used for many tasks.

Additionally, this thesis shows that MDL offers a parsimonious approach
that can be successfully applied to Data Mining problems. Based on solid
theory, heuristic algorithms can be designed that perform well in practice.

Not everything is solved though and our approach also introduces new prob-
lems. First, combinations of the problems addressed in this thesis are worth
investigating, e.g. identifying components in a changing data stream. Also,
there are Knowledge Discovery problems we have not yet addressed, e.g. out-
lier detection and resource recommendation. And, although we have shown
that our methods perform well on a variety of data, the ultimate goal would
be to have these used for large-scale real-world applications.

More fundamental to our approach is that we currently need to mine (all)
frequent patterns before doing pattern selection. To speed up the process,
it would be very beneficial if we could avoid this and mine the patterns that
matter directly from the database. To achieve this, it would be good to get more
insight in the process of selecting patterns, for example through visualisation.
Naturally, it would be interesting to extend our approach to other types of
data, for example to numerical data.

Finally, extending our compression approach to other (pattern-based) Data
Mining concepts would be a very interesting direction. One could, for example,
think of applying compression in Subgroup Discovery to reduce the search space
or as subgroup quality criterion.

151

Bibliography

C.C. Aggarwal. A framework for diagnosing changes in evolving data
streams. In Proceedings of the ACM SIGMOD’03, pages 575-586. ACM
Press, 2003.

C.C. Aggarwal. On abnormality detection in spuriously populated data
streams. In Proceedings of the SDM’05, pages 80-91, 2005.

C.C. Aggarwal, editor. Data Streams: Models and Algorithms. Springer,
2007.

C.C. Aggarwal, C. Procopiuc, and P.S. Yu. Finding localized associations
in market basket data. Trans Knowledge and Data Engineering, 14(1):51—
62, 2002.

C.C. Aggarwal and P.S. Yu. A condensation approach to privacy pre-
serving data mining. In Proceedings of the EDBT’04, pages 183-199,
2004.

D. Agrawal and C.C. Aggarwal. On the design and quantification of
privacy preserving data mining algorithms. In Proceedings of the SIG-
MOD’01, pages 247-255. ACM, 2001.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast
discovery of association rules. In Advances in Knowledge Discovery and
Data Mining, pages 307-328. AAAI, 1996.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proceedings of the VLDB’9/, pages 487499, 1994.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceed-
ings of the SIGMOD’00, pages 439-450. ACM, 2000.

M. Ames and M. Naaman. Why we tag: motivations for annotation in
mobile and online media. In CHI 2007: Proc. of the SIGCHI conf. on
Human factors in computing systems, pages 971-980. ACM, 2007.

153

BIBLIOGRAPHY

[11]

[12]

23]

154

P. Andritsos, P. Tsaparas, R.J. Miller, and K.C. Sevcik. LIMBO: Scalable
clustering of categorical data. In Proceedings of the EDBT, pages 124—
146, 2004.

C.M. Au Yeung, N. Gibbins, and N. Shadbolt. Understanding the se-
mantics of ambiguous tags in folksonomies. In Proc. of the First Int.
Workshop on Emergent Semantics and Ontology Fvolution, ESOFE 2007,
2007.

R. Bathoorn, A. Koopman, and A. Siebes. Reducing the frequent pattern
set. In Proceedings of the ICDM-Workshops’06, pages 5559, 2006.

R. Bayardo. Efficiently mining long patterns from databases. In Proceed-
ings of the SIGMOD’98, pages 85-93, 1998.

G. Begelman, P. Keller, and F. Smadja. Automated tag clustering im-
proved search and exploration in the tag space. In Proc. of Collaborative
Web Tagging Workshop at WWW 2006, 2006.

J. Bernardo and A. Smith. Bayesian Theory. Wiley Series in Probability
and Statistics. John Wiley and Sons, 1994.

H. Bischof, A. Leonardis, and A. Sleb. MdI principle for robust vector
quantization. Pattern Analysis and Applications, 2:59-72, 1999.

C. Béhm, C. Faloutsos, J-Y. Pan, and C. Plant. Robust information-
theoretic clustering. In Proceedings of the KDD, pages 65—75, 2006.

1. Bouzouita, S. Elloumi, and S.B. Yahia. GARC: A new associative
classification approach. In Proceedings of the DaWaK’ 06, pages 554565,
2006.

T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. The use of association
rules for product assortment decisions: a case study. In Proceedings of
the KDD, pages 254-260, 1999.

B. Bringmann and A. Zimmermann. The chosen few: On identifying
valuable patterns. In Proceedings of the ICDM’07, pages 63-72, 2007.

1.V. Cadez, P. Smyth, and H. Mannila. Probabilistic modeling of trans-
action data with applications to profiling, visualization, and prediction.
In Proceedings of the KDD, pages 3746, 2001.

T. Calders, N. Dexters, and B. Goethals. Mining frequent itemsets in a
stream. In Proceedings of the IEEE ICDM’07, pages 83-92, 2007.

Bibliography

[24]

[25]

[32]

[33]

[34]

T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In Proceedings of the ECML PKDD’02, pages 74-85, 2002.

Richard M. Carp. Reducibility among combinatorial problems. In R.E.
Miller and J.W. Thatcher, editors, Proc. of a Symp. on the Complexity of
Computer Computations, pages 85—-103, New York, USA, 1972. Plenum
Press.

D. Chakrabarti, S. Papadimitriou, D.S. Modha, and C. Faloutsos. Fully
automatic cross-associations. In Proceedings of the KDD’0/, pages 79-88,
2004.

V. Chandola and V. Kumar. Summarization — compressing data into an
informative representation. Knowl. Inf. Syst., 12(3):355-378, 2007.

K. Chen and L. Liu. Privacy preserving data classification with rotation
pertubation. In Proceedings of the ICDM’05, pages 589-592, 2005.

K. Chen and L. Liu. Detecting the change of clustering structure in
categorical data streams. In Proceedings of the SDM’06, 2006.

R. Cilibrasi and P. Vitanyi. Clustering by compression. IEEE Transac-
tions on Information Theory, 51(4):1523-1545, 2005.

E.F. Codd, S.B. Codd, and C.T. Salley. Providing olap (on-lineanalytical
processing) to user analyst: An it mandate. http://www.arborsoft.
com/0OLAP.html, 1994.

F. Coenen. The LUCS-KDD discretised /normalised ARM and CARM
data library. http://www.csc.liv.ac.uk/~frans/KDD/Software/
LUCS-KDD-DN/DataSets/dataSets.html, 2003.

F. Coenen. The LUCS-KDD software library. http://www.csc.liv.ac.
uk/~frans/KDD/Software/, 2004.

T.M. Cover and J.A. Thomas. Elements of Information Theory, 2nd ed.
John Wiley and Sons, 2006.

B. Crémilleux and J-F. Boulicaut. Simplest rules characterizing classes
generated by §-free sets. In Proceedings of the KBSAAI’02, pages 3346,
2002.

T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. An
information-theoretic approach to detecting changes in multi-dimensional
data streams. In Proceedings of Interface’06, 2006.

155

BIBLIOGRAPHY

[37]

156

G. Dong and J. Li. Efficient mining of emerging patterns: Discovering
trends and differences. In Proceedings of the SIGKDD’99, pages 43-52,
1999.

G. Dong and J. Li. Mining border descriptions of emerging patterns from
dataset pairs. Knowledge and Information Systems, 8(2):178-202, 2005.

R. Duda and P. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, New York, 1973.

C. Faloutsos and V. Megalooikonomou. On data mining, compression
and Kolmogorov complexity. In Data Mining and Knowledge Discovery,
volume 15, pages 3—20. Springer-Verlag, 2007.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comp. Sys. Sci.,
55(1):119-139, 1997.

F. Geerts, B. Goethals, and T. Mielikdinen. Tiling databases. In Pro-
ceedings of the DS’04, pages 278-289, 2004.

K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Profiling of high-frequency
accident locations using association rules. Transportation research record,
1840, 2003.

A. Gionis, H. Mannila, T. Mielikédinen, and P. Tsaparas. Assessing data
mining results via swap randomization. ACM Trans. Knowl. Discov.
Data, 1(3):14, 2007.

B. Goethals and M.J. Zaki. Frequent itemset mining implementations
repository (FIMI). http://fimi.cs.helsinki.fi, 2003.

E. Gokcay and J.C. Principe. Information theoretic clustering. Trans.
Pattern Analysis and Machine Intelligence, 24(2):158-171, 2002.

M. Grahl, A. Hotho, and G. Stumme. Conceptual clustering of social
bookmarking sites. In LWA 2007: Lernen - Wissen - Adaption, 2007.

P.D. Griinwald. Minimum description length tutorial. In P.D. Griinwald
and [.J. Myung, editors, Advances in Minimum Description Length. MIT
Press, 2005.

P.D. Griinwald. The Minimum Description Length Principle. MIT Press,
2007.

Bibliography

[50]

[51]

[59]

[60]

[61]

[62]

D. Hand, N. Adams, and R. Bolton, editors. Pattern Detection and
Discovery. Springer-Verlag, 2002.

H. Heikinheimo, M. Fortelius, J. Eronen, and H. Mannila. Biogeography
of european land mammals shows environmentally distinct and spatial
coherent clusters. Biogeogr., 34(6):1053-1064, 2007.

H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikainen, and J. K.
Seppéanen. Finding low-entropy sets and trees from binary data. In
Proceedings of the KDD’07, pages 350-359, 2007.

H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Low-entropy set
selection. In Proceedings of the SDM’09, pages 569-579, 2009.

A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. Information retrieval
in folksonomies: Search and ranking. In ESWC 2006: Proc. of the 3rd
European Semantic Web Conference, 2006.

7. Huang, W. Du, and B. Chen. Deriving private information from ran-
domized data. In Proceedings of the SIGMOD’05. ACM, 2005.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Random-data per-
turbation techniques and privacy-preserving data mining. Knowledge and
Information Systems, 4(7):387-414, 2005.

E. Keogh, S. Lonardi, and C.A. Ratanamahatana. Towards parameter-
free data mining. In Proceedings of the KDD’04, pages 206-215, 2004.

E. Keogh, S. Lonardi, C.A. Ratanamahatana, L. Wei, S-H. Lee, and
J. Handley. Compression-based data mining of sequential data. Data
Min. Knowl. Discov., 14(1):99-129, 2007.

D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams.
In Proceedings of VLDB’04, 2004.

A.J. Knobbe and E.K.Y. Ho. Maximally informative k-itemsets and their
efficient discovery. In Proceedings of the KDD’06, pages 237—-244, 2006.

A.J. Knobbe and E.K.Y. Ho. Pattern teams. In Proceedings of the ECML
PKDD’06, pages 577-584, 2006.

R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-
Cup 2000 organizers’ report: Peeling the onion. SIGKDD FEzplorations,
2(2):86-98, 2000. urlhttp://www.ecn.purdue.edu/KDDCUP.

157

BIBLIOGRAPHY

[63]

[71]

[72]

73]

[74]

158

P. Kontkanen, P. Myllyméaki, W. Buntine, J. Rissanen, and H. Tirri. An
mdl framework for clustering. Technical report, HIIT, 2004. Technical
Report 2004-6.

A. Koopman and A. Siebes. Discovering relational item sets efficiently.
In Proceedings of the SDM’08, 2008.

A. Koopman and A. Siebes. Characteristic relational patterns. In Pro-
ceedings of the KDD’09, pages 437-446, 2009.

M. Koyotrk, A. Grama, and N. Ramakrishnan. Compression, clustering,
and pattern discovery in very high-dimensional discrete-attribute data
sets. Trans Knowledge and Data Engineering, 17(4):447-461, 2005.

H-P. Kriegel, P. Kroger, and A. Zimek. Clustering high-dimensional data:
A survey on subspace clustering, pattern-based clustering, and correla-
tion clustering. TKDD, 3(1):1-58, 2009.

M. van Leeuwen, F. Bonchi, B. Sigurbjornsson, and A. Siebes. Compress-
ing tags to find interesting media groups. In Proceedings of the CIKM’09,
pages 1147-1156, 2009.

M. van Leeuwen and A. Siebes. Streamkrimp: Detecting change in data
streams. In Proceedings of the ECML PKDD’08, pages 672-687, 2008.

M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks the item
sets that matter. In Proceedings of the ECML PKDD’06, pages 585-592,
2006.

M. van Leeuwen, J. Vreeken, and A. Siebes. Identifying the components.
Data Min. Knowl. Discov., 19(2):173-292, 2009.

M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitdnyi. The similarity metric.
IEEFE Trans. on Information Theory, 50(12):3250-3264, 2004.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, 1993.

C.K. Liew, U.J. Choi, and C.J. Liew. A data distortion by probability
distribution. ACM Trans. on Database Systems, 3(10):395-411, 1985.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association
rule mining. In Proceedings of the KDD’98, pages 80-86, 1998.

G. Liu, H. Lu, J.X. Yu, W. Wei, and X. Xiao. AFOPT: An efficient
implementation of pattern growth approach. In Proceedings of the 2nd
workshop on Frequent Itemset Mining Implementations, 2004.

Bibliography

[82]

[83]

K. Liu, C. Giannella, and H. Kargupta. An attacker’s view of distance
preserving maps for privacy preserving data mining. In Proceedings of

the ECMLPKDD 06, pages 297-308, 2006.

A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.
l-diversity: Privacy beyond k-anonymity. In Proceedings of the ICDE’06,
pages 24-35, 2006.

J. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the 5th Symposium on Mathematical
Statistics and Probability, 1967.

H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed
representations. In Proceedings of the KDD’96, pages 189-194, 1996.

H. Mannila and H. Toivonen. Levelwise search and borders of theories
in knowledge discovery. Data Mining and Knowledge Discovery, pages
241-258, 1997.

M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier for
data mining. In Advances in database technology, pages 18-32. Springer,
1996.

D. Meretakis, H. Lu, and B. Wthrich. A study on the performance of
large bayes classifier. In In proceedings of the ECML’00, pages 271-279,
2000.

S. Merugu and J. Ghosh. Privacy-preserving distributed clustering using
generative models. In Proceedings of the ICDM’03, pages 211-218, 2003.

T. Mielikdinen and H. Mannila. The pattern ordering problem. In Pro-
ceedings of the ECML PKDD’03, pages 327-338, 2003.

A.J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P.J.H.
Reijnders, F. Spitzenberger, M. Stubbe, J.B.M. Thissen, V. Vohralik,
and J. Zima. The Atlas of Furopean Mammals. Academic Press, 1999.

K. Morik, J-F. Boulicaut, and A. Siebes, editors. Local Pattern Detection.
Springer-Verlag, 2005.

S. Muthukrishnan, E. van den Berg, and Y. Wu. Sequential change
detection on data streams. In Proceedings of the ICDM’07 Workshops,
2007.

159

BIBLIOGRAPHY

[89]

[92]

[93]

(98]

[99]

[100]

[101]

160

S. Myllykangas, J. Himberg, T. Bohling, B. Nagy, J. Hollmén, and
S. Knuutila. Dna copy number amplification profiling of human neo-
plasms. Oncogene, 25(55), 2006.

S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, unsuper-
vised stream mining. VLDB Journal, 13(3):222-239, 2004.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proceedings of the ICDT’99, pages
398-416, 1999.

R. Pensa, C. Robardet, and J-F. Boulicaut. A bi-clustering framework
for categorical data. In Proceedings of the ECML PKDD, pages 643-650,
2005.

B. Pfahringer. Compression-based feature subset selection. In Proceedings
of the IJCAI’95 Workshop on Data Engineering for Inductive Learning,
pages 109-119, 1995.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann,
Los Altos, California, 1993.

J.R. Quinlan. FOIL: a midterm report. In Proceedings of the ECML’93,
1993.

D. Ramage, P. Heymann, C.D. Manning, and H. Garcia-Molina. Clus-
tering the tagged web. In WSDM 2009: Proc. of the 2nd ACM Int.
Conference on Web Search and Data Mining, 2009.

J. Rissanen. Modeling by shortest data description. Automatica,
14(1):465-471, 1978.

G.-C. Rota. The number of partitions of a set. American Mathematical
Monthly, 71(5):498-504, 1964.

P. Samarati. Protecting respondents’ identities in microdata release.
IEEE Trans. on Knowledge and Data Engineering, 13(6):1010-1027,
2001.

J. Shawe-Taylor and N. Cristianini. Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In
Proceedings of the SDM’06, pages 393—404, 2006.

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

B. Sigurbjornsson and R. van Zwol. Flickr tag recommendation based on
collective knowledge. In WWW 2008, 2008.

Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W-C. Lee, and C. Lee Giles.
Real-time automatic tag recommendation. In ACM SIGIR, pages 515—
522, 2008.

A. Stuart, K. Ord, and S. Arnold. Classical Inference and the Linear
Model, volume 2A of Kendall’s Advanced Theory of Statistics. Arnold,
1999.

J. Sun, C. Faloutsos, S. Papadimitriou, and P.S. Yu. Graphscope:
parameter-free mining of large time-evolving graphs. In Proceedings of
the KDD’07, pages 687-696, 2007.

N. Tatti and J. Vreeken. Finding good itemsets by packing data. In
Proceedings of the ICDM’08, pages 588-597, 2008.

N. Tishby, F.C. Pereira, and W. Bialek. The information bottleneck
methods. In Proceedings of the Allerton Conf. on Communication, Con-
trol and Computing, pages 368-377, 1999.

D. Titterington, A. Smith, and U. Makov. Statistical Analysis of Finite
Mixture Distributions. John Wiley and Sons, 1985.

V.N. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

J. Vreeken, M. van Leeuwen, and A. Siebes. Characterising the difference.
In Proceedings of the KDD’07, pages 765-774, 2007.

J. Vreeken, M. van Leeuwen, and A. Siebes. Preserving privacy through
data generation. In Proceedings of the ICDM’07, pages 685—-690, 2007.

J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp — mining itemsets
that compress. Data Min. Knowl. Discov., 2010.

C.S. Wallace. Statistical and inductive inference by minimum message
length. Springer-Verlag, 2005.

J. Wang and G. Karypis. HARMONY: Efficiently mining the best rules
for classification. In Proceedings of the SDM’05, pages 205-216, 2005.

J. Wang and G. Karypis. On efficiently summarizing categorical
databases. Knowl. Inf. Syst., 9(1):19-37, 2006.

K. Wang, C. Xu, and B. Liu. Clustering transactions using large items.
In Proceedings of the CIKM, pages 483-490, 1999.

161

BIBLIOGRAPHY

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

162

H.R. Warner, A.F. Toronto, L.R. Veasey, and R. Stephenson. A mathe-
matical model for medical diagnosis, application to congenital heart dis-
ease. Journal of the American Medical Association, 177:177-184, 1961.

G. Widmer and M. Kubat. Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23:69-101, 1996.

LLH. Witten and E. Frank. Data Mining:Practical machine learning tools
and techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

Y. Xiang, R. Jin, D. Fuhry, and F.F. Dragan. Succinct summarization
of transactional databases: an overlapped hyperrectangle scheme. In
Proceedigns of the KDD’08, pages 758-766, 2008.

X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns:
A profile-based approach. In Proceedings of the KDD’05, pages 314-323,
2005.

X. Yin and J. Han. CPAR: Classification based on predictive association
rules. In Proceedings of the SDM’03, pages 331-335, 2003.

X. Zhang, D. Guozhu, and K. Ramamohanarao. Information-based
classification by aggregating emerging patterns. In Proceedings of the
IDEAL’00, pages 48-53, 2000.

D. Zhou, J. Bian, S. Zheng, H. Zha, and C. Lee Giles. Exploring social
annotations for information retrieval. In WWW 2008: Proc. of the 17th
int. conf on World Wide Web, 2008.

A Priori, 8
Aggregated Code Length Difference,
60
algorithm
Component Identification
Data-Driven, 119
Model-Driven, 114
FINDTAGGROUPS, 133
Grow Homogeneous Group,
132
Krimp, 21
Code Table Post-Acceptance
Pruning, 23
Standard Code Table, 18
Standard Cover, 20
KriMp Categorical Data Gen-
erator, 80
KrimP Classifier, 28
STREAMKRIMP, 99
Find Code Table on Stream,
97
Anonymity Score, 77

Bayes optimal choice, 27, 114, 118
bioinformatics, 1
buying behaviour, 110

closed itemset, 9, 35
code table, 11
Code Table Difference, 99

163

Index

Code Table Post-Acceptance Prun-
ing, 23

complexity, 24

compressibility, 128

Compression Gain, 129

cover function, 12

data stream, 93

Data-Driven Component Identifica-
tion, 119

database, 8

descriptive data mining, 2

Dissimilarity measure, 63

Find Code Table on Stream, 97
FinDTacGRrouUPS, 133

Flickr, 128

frequent set mining, 8

group coherence, 131
grouping, 130
Grow Homogeneous Group, 132

high dynamic range, 126

Improvement Rate, 96
itemset, 8

k-means, 111, 118, 127

KRrimp, 21

KriMmp Categorical Data Generator,
80

INDEX

Krimp Classifier, 28
Laplace correction, 28, 80, 98, 114

MDL, 9, 11, 58

minimal split, 97

Minimum Description Length, see
MDL

minsup, 8

Model-Driven Component Identifi-
cation, 114

Naive Bayes, 26, 41
Normalised Anonymity Score, 77

pattern explosion, 3, 9, 32, 44, 149
pattern mining, 3, 8

pattern sets, 9

pattern-similarity, 77

predictive data mining, 2
problem, 3

Data Stream Minimal Split Par-

titioning, 97

Data Stream Partitioning with
Unbounded Storage, 95

Identifying Database Compo-
nents, 112

Interesting Tag Grouping, 130

Maximum Compression Gain Group,

129
Minimal Coding Set, 16, 22
Privacy and Quality Preserv-
ing Database, 76
pruning, 22, 34

runtime, 34, 118, 122, 141

size
code table, 15
encoded database, 14
encoded transaction, 14
total compressed, 15
split, 97

164

Standard Candidate Order, 20, 42
Standard Code Table, 18
standard code table, 14

Standard Cover, 20

Standard Cover Order, 19, 42
STREAMKRIMP, 99

support, 8

swap randomisation, 37

tagset, 126
usage count, 13
Wikipedia, 135

zero, 99

Abstract

Pattern mining is one of the best-known concepts in Data Mining. A big
problem in pattern mining is that humongous amounts of patterns can be mined
even from small datasets. This makes it hard for domain experts to discover
knowledge using pattern mining, for example in the field of Bioinformatics. In
this thesis we address the pattern explosion using compression.

We argue that the best pattern set is that set of patterns that compresses
the data best. Based on an analysis from MDL (Minimum Description Length)
perspective, we introduce a heuristic algorithm, called KriMP, that finds the
best set of patterns. High compression ratios and good classification scores
confirm that KRIMP selects patterns that are very characteristic for the data.

After this, we proceed with a series of well-known problems in Knowledge
Discovery, which we each unravel with our compression approach. We propose
a database dissimilarity measure and show how compression can be used to
characterise differences between databases. We present an algorithm that gen-
erates synthetic data that is virtually indiscernible from the original data, but
can also be used to preserve privacy. Changes in data streams are detected
by using a KRIMP compressor to check whether the data distribution has been
changed or not. Finally, compression is used to identify the components of a
database and to find interesting groups in a database.

In each chapter, we provide an extensive experimental evaluation to show
that the proposed methods perform well on a large variety of datasets. In
the end, we conclude that having less, but more characteristic patterns is key
to successful Knowledge Discovery and that compression is very useful in this
respect. Not as goal in itself, but as means to an end: compression picks the
patterns that matter.

165

Samenvatting

‘Pattern mining’, het geautomatiseerd vinden van interessante patronen in ge-
gevens, is een van de belangrijkste concepten in Data Mining. Een groot pro-
bleem is echter dat meestal gigantische hoeveelheden patronen worden gevon-
den, zelfs op kleine databases. Dit maakt het moeilijk om pattern mining te
gebruiken voor het ontdekken van waardevolle kennis. In dit proefschrift pak-
ken we deze patroonezplosie aan met behulp van compressie (het ‘inpakken’ van
data).

We beargumenteren dat de verzameling patronen die de database het beste
comprimeert de beste is. Gebaseerd op een analyse vanuit MDL (‘Minimum
Description Length’) perspectief introduceren we een heuristisch algoritme, ge-
naamd KRIMP, dat de beste verzameling patronen vindt. Goede compressie en
hoge classificatiescores bevestigen dat KRIMP patronen selecteert die de data
erg goed beschrijven.

Hierna komen een aantal bekende problemen in Knowledge Discovery aan
de orde. Bij ieder van deze problemen passen we onze op compressie gebaseerde
aanpak toe en presenteren we nieuwe methoden om het probleem in kwestie
op te lossen. We introduceren een afstandsmaat voor databases and laten
zien hoe compressie gebruikt kan worden om verschillen tussen databases te
karakteriseren. Tevens presenteren we een algoritme dat synthetische data
genereert dat nauwelijks is te onderscheiden van de oorspronkelijke data. Ook
laten we zien dat het genereren van data gebruikt kan worden om privacy in
databases te beschermen. Veranderingen in gegevensstromen kunnen worden
gedetecteerd door te bekijken wanneer de compressie van de data verandert.
Tenslotte gebruiken we compressie om componenten en interessante groepen in
een database te vinden.

In ieder hoofdstuk geven we een uitgebreide experimentele evaluatie om te
laten zien dat de methoden het goed doen. De conclusie is dat het vinden van
minder, maar karakteristiekere patronen essentieel is voor succesvolle Know-
ledge Discovery. Dit proefschrift laat zien dat compressie hiervoor uitermate
geschikt is. Niet als doel, maar als middel om dit doel te bereiken: compressie
kiest de patronen die er toe doen.

167

Dankwoord

Vier jaar lang aan één project werken lijkt misschien heel lang, maar dankzij
een aantal mensen is mijn tijd als promovendus voorbijgevlogen en heb ik een
hele leuke en leerzame tijd gehad. Ik wil iedereen die hier betrokken bij is
geweest dan ook graag bedanken.

Beste Arno, het begon 4 jaar geleden met een vliegende start: Jilles, jij en
ik werkten een ideetje van jou uit en binnen een maand was het eerste paper
een feit. Een goed begin is het halve werk, en zo geschiedde. In combinatie met
de vrijheid en het vertrouwen dat je me gaf, kon ik vier jaar lang onderzoek
doen waar ik plezier in had en bovendien veel van leerde. Als hoofd van het
departement moest je soms misschien meer vrijheid geven dan je wenste, maar
wanneer nodig was je altijd bereid om mee te denken. Dankjewel!

De leescommissie, bestaande uit Pieter Adriaans, Luc De Raedt, Bart
Goethals, Joost Kok en Remco Veltkamp, wil ik graag bedanken voor het
lezen en goedkeuren van mijn proefschrift. Ik hoop dat jullie nog een paar
interessante vragen voor de verdediging hebben bewaard.

Francesco, thank you for offering me the opportunity to work on the Flickr
project and suggesting to send the paper to CIKM’09. Without this, I wouldn’t
have seen Hongkong! Oh, and yes, I liked the project too. I'm looking forward
to visiting your lab in Barcelona.

Zonder geld geen onderzoek. Het NBIC (Netherlands Bioinformatics Cen-
tre) heeft mijn aanstelling als promovendus bekostigd, waarvoor hartelijk dank.

Elly, ik wil je bedanken voor het lezen van de introductie van mijn proef-
schrift, maar meer nog voor je interesse in en positieve kijk op de talloze zaken
uit mijn leven (zowel scouting, werk als privé) die we, meest per e-mail, de
afgelopen jaren hebben besproken.

Een plezierige werkomgeving is van groot belang en in de Algoritmische
Data Analyse groep (voorheen Large Distributed Databases) heb ik me altijd
op m’n plek gevoeld. Men zegt wel dat het belangrijk is om ook onder werktijd
af en toe te ontspannen en dit advies namen wij dan ook graag ter harte.
Hiervoor wil ik alle (oud-)collega’s, Ad, Hans, Lennart, Arno, Edwin, Ronnie,
Carsten, Rainer, Subianto, Jeroen, Nicola en Diyah, heel erg bedanken. Naast

169

de wisselende activiteiten (van darten via tafeltennissen naar introquizen en
what-the-movie-en) was er ook altijd een constante: gezamenlijk koffie drinken.

Beste Arne, al sinds het Robolab vriend en studiegenoot/collega. Maar
naast studie & werk was er meer. Behalve vele bezoekjes aan Quignon hebben
we vele restaurants in Utrecht bezocht, cabaretvoorstellingen gezien, rare foto’s
gemaakt, enzovoorts. Alleen naar vastenavend heb je Jilles en mij (nog?) nooit
meegekregen. Nu ik klaar ben, ben jij de laatste van A113 die je proefschrift
gaat afronden — veel succes met deze laatste loodjes. En dan op naar de come-
back van A113 waar Jilles al aan refereerde!

Beste Jilles, in de loop der jaren hebben we samen al veel leuks mee mogen
maken, als klasgenoten, studiegenoten en collega’s, maar bovenal als vrienden.
Van Breukelen naar de Uithof, via Lausanne, Ziirich, Spanje (2x), Friesland
(2x), Berlijn, Spitsbergen, San Francisco, San José, New York, Omaha, Traben-
Trarbach, Antwerpen, Kaapverdié en Bled naar Bisonspoor. Dus, nu we er
toch zijn, what’s next? Samen fotograferen, reizen, zeilen, eten, drinken, een
conferentie bezoeken, een paper schrijven? Wat mij betreft allemaal. En als je
in de buurt bent, het bierli staat koud.

Opa en oma, jullie hebben me regelmatig gevraagd wat ik precies voor werk
doe. Dit inhoudelijk uitleggen is niet eenvoudig, maar nu kunnen jullie het met
eigen ogen zien: dit boekje is het eindresultaat van 4 jaar promoveren! Ik ben
blij dat jullie bij de verdediging hiervan aanwezig kunnen zijn.

Zonder mijn ouders zou ik niet zijn wie ik nu ben. Piet en Ida, heel erg
bedankt voor jullie interesse, steun en goede zorgen, ieder op jullie eigen manier.
Piet, ik hoop dat dit proefschrift een mooi plekje bij de proefschriften van je
eigen promovendi krijgt en dat het aantal taalfoutjes dat je vindt niet in de
honderden loopt. Ida, fijn dat je altijd voor me klaarstaat, of het nu gaat om
het behangen van een huis of om een avondje samen te eten en bij te praten.
Karin en David, dank jullie wel voor jullie interesse. Ik zie jullie ook nog wel
eens een boek schrijven, al zal het onderwerp heel anders zijn.

Lieve Lieselot, ook al zijn we ‘pas’ een paar jaar samen, in die tijd hebben
we al ontzettend veel meegemaakt. Heel veel leuke dingen, maar helaas ook
minder leuke dingen. Dit zorgde voor de nodige verbreding: naast de Uithof
heb ik ook het AMC leren kennen en naast informatica heb ik ook veel meer
geneeskunde geleerd. Dankzij jouw wilskracht en positieve instelling slaan we
ons overal doorheen en kunnen we samen altijd lachen. Ik zou niet meer anders
willen. Bwaaaaaaaah!

Maarssen, december 2009

Curriculum Vitae

Matthijs van Leeuwen was born on 19 September 1981 in Kockengen, the
Netherlands. In 1999, he started studying Computer Science at the Univer-
siteit Utrecht, specialising in Technical Artificial Intelligence. In 2004, he ob-
tained his master’s degree after writing his thesis titled ‘Spike Timing Depen-
dent Structural Plasticity, in a single model neuron’, under supervision of Ora
Ohana (ETH, Ziirich) and Marco Wiering (UU, Utrecht).

In 2005, Matthijs started his Ph.D. in the Algorithmic Data Analysis group
(then called Large Distributed Databases) at the Universiteit Utrecht, under
supervision of Prof.dr. Arno Siebes. In 2009, he finished this Ph.D. thesis.
After that, he became a postdoctoral researcher in the same group, working on
Exceptional Model Mining.

Besides doing research, there are some other activities that Matthijs finds
relaxing. Two of these activities, sailing and kiting, both involve wind, which,
luckily for him, is usually abundant in the Netherlands. Two other passions
are photography and travelling, which he happily combines with either sailing
or visiting conferences.

171

SIKS Dissertation Series

1998 1 J. van den Akker (CWI), DEGAS - An Active, Temporal Database of Autonomous Objects
2 F. Wiesman (UM), Information Retrieval by Graphically Browsing Meta-Information
3 A.Steuten (TUD), A Contribution to the Linguistic Analysis of Business Conversations within
the Language/Action Perspective
D. Breuker (UM), Memory versus Search in Games
E.W. Oskamp (RUL), Computerondersteuning bij Straftopmeting

CEN

1999 1 M. Sloof (VU), Physiology of Quality Change Modelling; Automated modelling of Quality
Change of Agricultural Products

2 R. Potharst (EUR), Classification using decision trees and neural nets
3 D. Beal (UM), The Nature of Minimax Search
4 J. Penders (UM), The practical Art of Moving Physical Objects
5 A. de Moor (KUB), Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems
6 N.J.E. Wijngaards (VU), Re-design of compositional systems
7 D. Spelt (UT), Verification support for object database design
8 J.H.J. Lenting (UM), Informed Gambling: Conception and Analysis of a Multi-Agent Mech-
anism for Discrete Reallocation
2000 1 F. Niessink (VU), Perspectives on Improving Software Maintenance
2 K. Holtman (TUE), Prototyping of CMS Storage Management
3 C.M.T. Metselaar (UvA), Sociaal-organisatorische gevolgen van kennistechnologie; een pro-
cesbenadering en actorperspectief
4 G. de Haan (VU), ETAG, A Formal Model of Competence Knowledge for User Interface Design
5 R. van der Pol (UM), Knowledge-based Query Formulation in Information Retrieval
6 R. van Eijk (UU), Programming Languages for Agent Communication
7 N. Peek (UU), Decision-theoretic Planning of Clinical Patient Management
8 V. Coupé (EUR), Sensitivity Analyis of Decision-Theoretic Networks
9 F. Waas (CWI), Image database management system design considerations, algorithms and
architecture
11 J. Karlsson (CWI), Scalable Distributed Data Structures for Database Management
2001 1 S. Renooij (UU), Qualitative Approaches to Quantifying Probabilistic Networks
2 K. Hindriks (UU), Agent Programming Languages: Programming with Mental Models
3 M. van Someren (UvA), Learning as problem solving
4 E. Smirnov (UM), Conjunctive and disjunctive version spaces with instance-based boundary
sets
5 J. van Ossenbruggen (VU), Processing Structured Hypermedia: A Matter of Style
6 M. van Welie (VU), Task-based User Interface Design
7 B. Schonhage (VU), Diva: Architectural Perspectives on Information Visualization
8 P. van Eck (VU), A Compositional Semantic Structure for Multi-Agent Systems Dynamics
9 P.J. ’t Hoen (RUL), Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes
10 M. Sierhuis (UvA), Modeling and Simulating Work Practice BRAHMS: a Multiagent Modeling
and Simulation Language for Work Practice Analysis and Design
11 T.M. van Engers (VU), Knowledge management: The Role of Mental Models in Business
Systems Design
2002 N. Lassing (VU), Architecture-Level Modifiability Analysis

R. van Zwol (UT), Modelling and Searching Web-based Document Collections
H.E. Blok (UT), Database Optimization Aspects for Information Retrieval
J.R. Castelo Valdueza (UU), The Discrete Acyclic Digraph Markov Model in Data Mining

O

173

SIKS DISSERTATION SERIES

5 R. Serban (VU), The Private Cyberspace Modeling Electronic Environments inhabited by
Privacy-concerned Agents
6 L. Mommers (UL), Applied legal epistemology
7 P. Boncz (CWI), Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications
8 J. Gordijn (VU), Value-based requirements engineering: exploring innovative e-commerce
ideas
9 W-J. van den Heuvel (KUB), Integrating Modern Business Applications with Objectified
Legacy Systems
10 B. Sheppard (UM), Towards Perfect Play of Scrabble
11 W.C.A. Wijngaards (VU), Agent based modelling of dynamics: biological and organisational
applications
12 A. Schmidt (UvA), Processing XML in Database Systems
13 H. Wu (TUE), A Reference Architecture for Adaptive Hypermedia Applications
14 W. de Vries (UU), Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems
15 R. Eshuis (UT), Semantics and Verification of UML Activity Diagrams for Workflow Modelling
16 P. van Langen (VU), The Anatomy of Design: Foundations, Models and Applications
17 S. Manegold (UvA), Understanding, Modeling, and Improving Main-Memory Database Per-
formance
2003 1 H. Stuckenschmidt (VU), Ontology-based information sharing in weakly structured environ-
ments
2 J. Broersen (VU), Modal Action Logics for Reasoning About Reactive Systems
3 M. Schuemie (TUD), Human-Computer Interaction and Presence in Virtual Reality Exposure
Therapy
4 M. Petkovic (UT), Content-Based Video Retrieval Supported by Database Technology
5 J. Lehmann (UvA), Causation in Artificial Intelligence and Law - A modelling approach
6 B. van Schooten (UT), Development and Specification of Virtual Environments
7 M. Jansen (UvA), Formal Explorations of Knowledge Intensive Tasks
8 Y. Ran (UM), Repair Based Scheduling
9 R. Kortmann (UM), The Resolution of Visually Guided Behaviour
10 A. Lincke (UT), Some Experimental Studies on the Interaction between Medium, Innovation
context and Culture
11 S. Keizer (UT), Reasoning under Uncertainty in Natural Language Dialogue using Bayesian
Networks
12 R. Ordelman (UT), Dutch Speech Recognition in Multimedia Information Retrieval
13 J. Donkers (UM), Nosce Hostem - Searching with Opponent Models
14 S. Hoppenbrouwers (KUN), Freezing Language: Conceptualisation Processes across ICT-
Supported Organisations
15 M. de Weerdt (TUD), Plan Merging in Multi-Agent Systems
16 M. Windhouwer (CWI), Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses
17 D. Jansen (UT), Extensions of Statecharts with Probability, Time, and Stochastic Timing
18 L. Kocsis (UM), Learning Search Decisions
2004 1 V. Dignum (UU), A Model for Organizational Interaction: Based on Agents, Founded in Logic
2 L. Xu (UT), Monitoring Multi-party Contracts for E-business
3 P. Groot (VU), A Theoretical and Empirical Analysis of Approximation in Symbolic Problem
Solving
4 C. van Aart (UvA), Organizational Principles for Multi-Agent Architectures
5 V. Popova (EUR), Knowledge Discovery and Monotonicity
6 B-J. Hommes (TUD), The Evaluation of Business Process Modeling Techniques
7 E. Boltjes (UM), Voorbeeldig onderwijs
8 J. Verbeek (UM), Politie en de Nieuwe Internationale Informatiemarkt
9 M. Caminada (VU), For the Sake of the Argument; Explorations into Argument-based Rea-
soning
10 S. Kabel (UvA), Knowledge-rich Indexing of Learning-objects
11 M. Klein (VU), Change Management for Distributed Ontologies
12 T. Duy Bui (UT), Creating Emotions and Facial Expressions for Embodied Agents
13 W. Jamroga (UT), Using Multiple Models of Reality: On Agents who Know how to Play
14 P. Harrenstein (UU), Logic in Conflict. Logical Explorations in Strategic Equilibrium
15 A. Knobbe (UU), Multi-Relational Data Mining
16 F. Divina (VU), Hybrid Genetic Relational Search for Inductive Learning
17 M. Winands (UM), Informed Search in Complex Games
18 V. Bessa Machado (UvA), Supporting the Construction of Qualitative Knowledge Models
19 T. Westerveld (UT), Using Generative Probabilistic Models for Multimedia Retrieval
20 M. Evers (Nyenrode), Learning from Design: Facilitating Multidisciplinary Design Teams
2005 1 F. Verdenius (UvA), Methodological Aspects of Designing Induction-Based Applications
2 E. van der Werf (UM), Al techniques for the Game of Go
3 F. Grootjen (RUN), A Pragmatic Approach to the Conceptualisation of Language

174

4 N. Meratnia (UT), Towards Database Support for Moving Object data

5 G. Infante-Lopez (UvA), Two-Level Probabilistic Grammars for Natural Language Parsing

6 P. Spronck (UM), Adaptive Game AI

7 F. Frasincar (TUE), Hypermedia presentation generation for semantic web information sys-
tems

8 R. Vdovjak (TUE), A Model-driven Approach for Building Distributed Ontology-based Web
Applications

9 J. Broekstra (VU), Storage, Querying and Inferencing for Semantic Web Languages

10 A. Bouwer (UvA), Explaining behaviour: using qualitative simulation in interactive learning

11 E. Ogston (VU), Agent Based Matchmaking and Clustering - A Decentralized Approach to
Search

12 C. Boer (EUR), Distributed Simulation in Industry

13 F. Hamburg (UL), Een Computermodel voor het ondersteunen van euthanasiebeslissingen

14 B. Omelayenko (VU), Web-Service configuration on the Semantic Web; Exploring how Se-
mantics meets Pragmatics

15 T. Bosse (VU), Analysis of the Dynamics of Cognitive Processes

16 J. Graaumans (UU), Usability of XML Query Languages

17 B. Shishkov (TUD), Software Specification Based on Re-usable Business Components

18 D. Sent (UU), Test-selection Strategies for Probabilistic Networks

19 M. van Dartel (UM), Situated Representation

20 C. Coteanu (UL), Cyber Consumer Law, State of the Art and Perspectives

21 W. Derks (UT), Improving Concurrency and Recovery in Database Systems by Exploiting
Application Semantics

2006 1 S. Angelov (TUE), Foundations of B2B Electronic Contracting

2 C. Chisalita (VU), Contextual issues in the Design and use of Information Technology in
Organizations

3 N. Christoph (UvA), The role of Metacognitive Skills in Learning to Solve Problems

4 M. Sabou (VU), Building Web Service Ontologies

5 C. Pierik (UU), Validation Techniques for Object-Oriented Proof Outlines

6 Z. Baida (VU), Software-aided service bundling - intelligent methods tools for graphical ser-
vice modeling

7 M. Smiljanic (UT), XML schema matching - balancing efficiency and effectiveness by means
of clustering

8 E. Herder (UT), Forward, Back and Home Again - Analyzing User Behavior on the Web

9 M. Wahdan (UM), Automatic Formulation of the Auditor’s Opinion

10 R. Siebes (VU), Semantic Routing in Peer-to-Peer Systems

11 J. van Ruth (UT), Flattening Queries over Nested Data Types

12 B. Bongers (VU), Interactivation - Towards an e-cology of people, our t-environment, and the
arts

13 H-J. Lebbink (UU), Dialogue and Decision Games for Information Exchanging Agents

14 J. Hoorn (VU), Software requirements: update, upgrade, redesign

15 R. Malik (UU), CONAN: Text Mining in the Biomedical Domain

16 C. Riggelsen (UU), Approximation Methods for Efficient Learning of Bayesian Networks

17 S. Nagata (UU), User Assistance for Multitasking with Interruptions on a Mobile Device

18 V. Zhizhkun (UvA), Graph transformation for Natural Language Processing

19 B. van Riemsdijk (UU), Cognitive Agent Programming: A Semantic Approach

20 M. Velikova (UvT), Monotone models for prediction in data mining

21 B. van Gils (RUN), Aptness on the Web

22 P. de Vrieze (RUN), Fundaments of Adaptive Personalisation

23 1. Juvina (UU), Development of Cognitive Model for Navigating on the Web

24 L. Hollink (VU), Semantic Annotation for Retrieval of Visual Resources

25 M. Drugan (UU), Conditional log-likelihood MDL and Evolutionary MCMC

26 V. Mihajlovic (UT), Score Region Algebra: A Flexible Framework for Structured Information
Retrieval

27 S. Bocconi (CWI), Vox Populi: generating video documentaries from semantically annotated
media repositories

28 B. Sigurbjornsson (UvA), Focused Information Access using XML Element Retrieval

2007 1 K. Leune (UvT), Access Control and Service-Oriented Architectures

2 W. Teepe (RUG), Reconciling Information Exchange and Confidentiality: A Formal Approach

3 P. Mika (VU), Social Networks and the Semantic Web

4 J. van Diggelen (UU), Achieving Semantic Interoperability in Multi-agent Systems

5 B. Schermer (UL), Software Agents, Surveillance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

6 G. Mishne (UvA), Applied Text Analytics for Blogs

7 N. Jovanovic’ (UT), To whom it may concern - addressee identification in face-to-face meetings

8 M. Hoogendoorn (VU), Modeling of Change in Multi-Agent Organizations

9 D. Mobach (VU), Agent-Based Mediated Service Negotiation

10 H. Aldewereld (UU), Autonomy vs. Conformity: an Institutional Perspective on Norms and

Protocols

175

SIKS DISSERTATION SERIES

11 N. Stash (TUE), Incorporating cognitive learning styles in a gen-purpose adaptive hypermedia
system

12 M. van Gerven (RUN), Bayesian Networks for Clinical Decision Support: A Rational Approach
to Dynamic Decision-Making under Uncertainty

13 R. Rienks (UT), Meetings in Smart Environments; Implications of Progressing Technology

14 N. Bergboer (UM), Context-Based Image Analysis

15 J. Lacroix (UM), NIM: a Situated Computational Memory Model

16 D. Grossi (UU), Designing Invisible Handcuffs

17 T. Charitos (UU), Reasoning with Dynamic Networks in Practice

18 B. Orriens (UvT), On the development an management of adaptive business collaborations

19 D. Levy (UM), Intimate relationships with artificial partners

20 S. Jansen (UU), Customer Configuration Updating in a Software Supply Network

21 K. Vermaas (UU), Fast diffusion and broadening use: A research on residential adoption and
usage of broadband internet in the Netherlands between 2001 and 2005

22 Z. Zlatev (UT), Goal-oriented design of value and process models from patterns

23 P. Barna (TUE), Specification of Application Logic in Web Information Systems

24 G. Ramirez Camps (CWI), Structural Features in XML Retrieval

25 J. Schalken (VU), Empirical Investigations in Software Process Improvement

2008 1 K. Boer-Sorban (EUR), Agent-Based Simulation of Financial Markets

2 A. Sharpanskykh (VU), On computer-aided methods for modeling and analysis of organiza-
tions

3 V. Hollink (UvA), Optimizing hierarchical menus: a usage-based approach

4 A. de Keijzer (UT), Management of Uncertain Data - towards unattended integration

5 B. Mutschler (UT), Modeling and simulating causal dependencies on process-aware informa-
tion systems from a cost perspective

6 A. Hommersom (RUN), On the Application of Formal Methods to Clinical Guidelines, an
Artificial Intelligence Perspective

7 P. van Rosmalen (OU), Supporting the tutor in the design and support of adaptive e-learning

8 J. Bolt (UU), Bayesian Networks: Aspects of Approximate Inference

9 C. van Nimwegen (UU), The paradox of the guided user: assistance can be counter-effective

10 W. Bosma (UT), Discourse oriented summarization

11 V. Kartseva (VU), Designing Controls for Network Organizations: A Value-Based Approach

12 J. Farkas (RUN), A Semiotically Oriented Cognitive Model of Knowledge Representation

13 C. Carraciolo (UvA), Topic Driven Access to Scientific Handbooks

14 A. van Bunningen (UT), Context-Aware Querying; Better Answers with Less Effort

15 M. van Otterlo (UT), The Logic of Adaptive Behavior: Knowledge Representation and Algo-
rithms for the Markov Decision Process Framework in First-Order Domains

16 H. van Vugt (VU), Embodied agents from a user’s perspective

17 M. Op ’t Land (TUD), Applying Architecture and Ontology to the Splitting and Allying of
Enterprises

18 G. de Croon (UM), Adaptive Active Vision

19 H. Rode (UT), From Document to Entity Retrieval: Improving Precision and Performance of
Focused Text Search

20 R. Arendsen (UvA), Geen bericht, goed bericht

21 K. Balog (UvA), People Search in the Enterprise

22 H. Koning (UU), Communication of IT-Architecture

23 S. Visscher (UU), Bayesian network models for the management of ventilator-associated pneu-
monia

24 Z. Aleksovski (VU), Using background knowledge in ontology matching

25 G. Jonker (UU), Efficient and Equitable Exchange in Air Traffic Management Plan Repair
using Spender-signed Currency

26 M. Huijbregts (UT), Segmentation, diarization and speech transcription: surprise data un-
raveled

27 H. Vogten (OU), Design and Implementation Strategies for IMS Learning Design

28 1. Flesch (RUN), On the Use of Independence Relations in Bayesian Networks

29 D. Reidsma (UT), Annotations and Subjective Machines - Of Annotators, Embodied Agents,
Users, and Other Humans

30 W. van Atteveldt (VU), Semantic Network Analysis: Techniques for Extracting, Representing
and Querying Media Content

31 L. Braun (UM), Pro-Active Medical Information Retrieval

32 T.H. Bui (UT), Toward Affective Dialogue Management using Partially Observable Markov
Decision Processes

33 F. Terpstra (UvA), Scientific Workflow Design; theoretical and practical issues

34 J. De Knijf (UU), Studies in Frequent Tree Mining

35 B.T. Nielsen (UvT), Dendritic morphologies: function shapes structure

2009 1 R. Jurgelenaite (RUN), Symmetric Causal Independence Models
2 W.R. van Hage (VU), Evaluating Ontology-Alignment Techniques
3 H. Stol (UvT), A Framework for Evidence-based Policy Making Using IT

176

4 J. Nabukenya (RUN), Improving the Quality of Organisational Policy Making using Collabo-
ration Engineering

5 S. Overbeek (RUN), Bridging Supply and Demand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

6 M. Subianto (UU), Understanding Classification

7 R. Poppe (UT), Discriminative Vision-Based Recovery and Recognition of Human Motion

8 V. Nannen (VU), Evolutionary Agent-Based Policy Analysis in Dynamic Environments

9 B. Kanagwa (RUN), Design, Discovery and Construction of Service-oriented Systems

10 J.A.N. Wielemaker (UvA), Logic programming for knowledge-intensive interactive applica-
tions

11 A. Boer (UvA), Legal Theory, Sources of Law & the Semantic Web

12 P. Massuthe (TUE, Humboldt-Universitaet zu Berlin), Operating Guidelines for Services

13 S. de Jong (UM), Fairness in Multi-Agent Systems

14 M. Korotkiy (VU), From ontology-enabled services to service-enabled ontologies

15 R. Hoekstra (UvA), Ontology Representation - Design Patterns and Ontologies that Make
Sense

16 F. Reul (UvT), New Architectures in Computer Chess

17 L. van der Maaten (UvT), Feature Extraction from Visual Data

18 F. Groffen (CWI), Armada, An Evolving Database System

19 V. Robu (CWI), Modeling Preferences, Strategic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

20 B. van der Vecht (UU), Adjustable Autonomy: Controling Influences on Decision Making

21 S. Vanderlooy (UM), Ranking and Reliable Classification

22 P. Serdyukov (UT), Search For Expertise: Going beyond direct evidence

23 P. Hofgesang (VU), Modelling Web Usage in a Changing Environment

24 A. Heuvelink (VU), Cognitive Models for Training Simulations

25 A. van Ballegooij (CWI), RAM: Array Database Management through Relational Mapping

26 F. Koch (UU), An Agent-Based Model for the Development of Intelligent Mobile Services

27 C. Glahn (OU), Contextual Support of social Engagement and Reflection on the Web

28 S. Evers (UT), Sensor Data Management with Probabilistic Models

29 S. Pokraev (UT), Model-Driven Semantic Integration of Service-Oriented Applications

30 M. Zukowski (CWI), Balancing vectorized query execution with bandwidth-optimized storage

31 S. Katrenko (UvA), A Closer Look at Learning Relations from Text

32 R. Farenhorst and R. de Boer (VU), Architectural Knowledge Management: Supporting Ar-
chitects and Auditors

33 K. Truong (UT), How Does Real Affect Affect Affect Recognition In Speech?

34 1. van de Weerd (UU), Advancing in Software Product Management: An Incremental Method
Engineering Approach

35 W. Koelewijn (UL), Privacy en Politiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling

36 M. Kalz (OUN), Placement Support for Learners in Learning Networks

37 H. Drachsler (OUN), Navigation Support for Learners in Informal Learning Networks

38 R. Vuorikari (OU), Tags and self-organisation: a metadata ecology for learning resources in
a multilingual context

39 C. Stahl (TUE, HU Berlin), Service Substitution — A Behavioral Approach Based on Petri
Nets

40 S. Raaijmakers (UvT), Multinomial Language Learning: Investigations into the Geometry of
Language

41 1. Berezhnyy (UvT), Digital Analysis of Paintings

42 T. Bogers (UvT), Recommender Systems for Social Bookmarking

43 V. Nunes Leal Franqueira (UT), Finding Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

44 R. Santana Tapia (UT), Assessing Business-IT Alignment in Networked Organizations

45 Jilles Vreeken (UU), Making Pattern Mining Useful

2010 1 Matthijs van Leeuwen (UU), Patterns that Matter

177

